Chromatic shadows for improved perception

Soft shadows are effective depth and shape cues. However, traditional shadowing algorithms decrease the luminance in shadow areas. The features in shadow become dark and thus shadowing causes information hiding. For this reason, in shadowed areas, medical illustrators decrease the luminance less and compensate the lower luminance range by adding color, i.e., by introducing a chromatic component. This paper presents a novel technique which enables an interactive setup of an illustrative shadow representation for preventing overdarkening of important structures. We introduce a scalar attribute for every voxel denoted as shadowiness and propose a shadow transfer function that maps the shadowiness to a color and a blend factor. Typically, the blend factor increases linearly with the shadowiness. We then let the original object color blend with the shadow color according to the blend factor. We suggest a specific shadow transfer function, designed together with a medical illustrator which shifts the shadow color towards blue. This shadow transfer function is quantitatively evaluated with respect to relative depth and surface perception.

[1]  Stefan Bruckner,et al.  TECHNICAL REPORT VolumeShop: An Interactive System for Direct Volume , 2022 .

[2]  Sergey Zhukov,et al.  An Ambient Light Illumination Model , 1998, Rendering Techniques.

[3]  K. Bala,et al.  Effects of global illumination approximations on material appearance , 2010, ACM Trans. Graph..

[4]  Martin Knecht,et al.  State of the Art Report on Ambient Occlusion , 2007 .

[5]  Henry Gee,et al.  Art and illusion , 2011 .

[6]  Ivan Viola,et al.  Seismic volume visualization for horizon extraction , 2010, 2010 IEEE Pacific Visualization Symposium (PacificVis).

[7]  Qiang Zhang,et al.  Realistic volume imaging , 1991, Proceeding Visualization '91.

[8]  Bui Tuong Phong Illumination for computer generated pictures , 1975, Commun. ACM.

[9]  Colin Ware,et al.  Evaluating stereo and motion cues for visualizing information nets in three dimensions , 1996, TOGS.

[10]  Werner Purgathofer,et al.  Eurographics Symposium on Rendering (2004) an Analytical Model for Skylight Polarisation , 2022 .

[11]  Joe Michael Kniss,et al.  A Model for Volume Lighting and Modeling , 2003, IEEE Trans. Vis. Comput. Graph..

[12]  Tovi Grossman,et al.  An evaluation of depth perception on volumetric displays , 2006, AVI '06.

[13]  Holger Winnemöller,et al.  Using NPR to evaluate perceptual shape cues in dynamic environments , 2007, NPAR '07.

[14]  Anders Ynnerman,et al.  Local Ambient Occlusion in Direct Volume Rendering , 2010, IEEE Transactions on Visualization and Computer Graphics.

[15]  James C. Harris The Virgin of the Rocks. , 2009, Archives of general psychiatry.

[16]  Ralf Ratering,et al.  Adding Shadows to a Texture-Based Volume Renderer , 1998, VVS.

[17]  Marc Levoy,et al.  Display of surfaces from volume data , 1988, IEEE Computer Graphics and Applications.

[18]  Joe Michael Kniss,et al.  Multidimensional Transfer Functions for Interactive Volume Rendering , 2002, IEEE Trans. Vis. Comput. Graph..

[19]  A. Medina Puerta The power of shadows: shadow stereopsis. , 1989, Journal of the Optical Society of America. A, Optics and image science.

[20]  Dan Margulis Photoshop LAB Color: The Canyon Conundrum and Other Adventures in the Most Powerful Colorspace , 2005 .

[21]  Maneesh Agrawala,et al.  The assumed light direction for perceiving shape from shading , 2008, APGV '08.

[22]  J. Koenderink,et al.  Surface perception in pictures , 1992, Perception & psychophysics.

[23]  Mathias Schott,et al.  A Directional Occlusion Shading Model for Interactive Direct Volume Rendering , 2009, Comput. Graph. Forum.

[24]  Ivan Viola,et al.  A Multidirectional Occlusion Shading Model for Direct Volume Rendering , 2010, Comput. Graph. Forum.

[25]  V. S. Ramachandran,et al.  Perception of shape from shading , 1988, Nature.

[26]  David C. Banks,et al.  A Comparison of the Perceptual Benefits of Linear Perspective and Physically-Based Illumination for Display of Dense 3D Streamtubes , 2008, IEEE Transactions on Visualization and Computer Graphics.

[27]  Donald P. Greenberg,et al.  Perceiving spatial relationships in computer-generated images , 1992, IEEE Computer Graphics and Applications.

[28]  Mateu Sbert,et al.  Viewpoint information channel for illustrative volume rendering , 2010, Comput. Graph..

[29]  Jonathan D. Pfautz,et al.  Depth Perception in Computer Graphics , 2000 .

[30]  Anders Ynnerman,et al.  Interactive Global Light Propagation in Direct Volume Rendering using Local Piecewise Integration , 2008, VG/PBG@SIGGRAPH.

[31]  Christof Rezk Salama,et al.  GPU-Based Monte-Carlo Volume Raycasting , 2007, 15th Pacific Conference on Computer Graphics and Applications (PG'07).

[32]  Peter-Pike J. Sloan,et al.  Interactive technical illustration , 1999, SI3D.

[33]  Antonio Medina Puerta,et al.  The power of shadows: shadow stereopsis , 1989 .

[34]  Timo Ropinski,et al.  Interactive volumetric lighting simulating scattering and shadowing , 2010, 2010 IEEE Pacific Visualization Symposium (PacificVis).

[35]  Frédo Durand,et al.  Implicit visibility and antiradiance for interactive global illumination , 2007, ACM Trans. Graph..

[36]  Min H. Kim,et al.  Perceptual influence of approximate visibility in indirect illumination , 2009, TAP.

[37]  Elaine Cohen,et al.  A non-photorealistic lighting model for automatic technical illustration , 1998, SIGGRAPH.

[38]  Àlex Méndez-Feliu,et al.  From obscurances to ambient occlusion: A survey , 2009, The Visual Computer.

[39]  Donald H. House,et al.  Texturing of Layered Surfaces for Optimal Viewing , 2006, IEEE Transactions on Visualization and Computer Graphics.