暂无分享,去创建一个
[1] G. Dirac. Some Theorems on Abstract Graphs , 1952 .
[2] Stefan Szeider,et al. A probabilistic approach to problems parameterized above or below tight bounds , 2009, J. Comput. Syst. Sci..
[3] John Adrian Bondy,et al. A method in graph theory , 1976, Discret. Math..
[4] Didem Gözüpek,et al. On one extension of Dirac's theorem on Hamiltonicity , 2017, Discret. Appl. Math..
[5] M. Held,et al. A dynamic programming approach to sequencing problems , 1962, ACM National Meeting.
[6] D. Kuhn,et al. Hamilton cycles in graphs and hypergraphs: an extremal perspective , 2014, 1402.4268.
[7] Richard Bellman,et al. Dynamic Programming Treatment of the Travelling Salesman Problem , 1962, JACM.
[8] Russell Impagliazzo,et al. Which Problems Have Strongly Exponential Complexity? , 2001, J. Comput. Syst. Sci..
[9] Fedor V. Fomin,et al. Finding Detours is Fixed-Parameter Tractable , 2016, ICALP.
[10] Michal Pilipczuk,et al. Parameterized Algorithms , 2015, Springer International Publishing.
[11] Hao Li,et al. Generalizations of Dirac's theorem in Hamiltonian graph theory - A survey , 2013, Discret. Math..
[12] Marek Karpinski,et al. On the Parallel Complexity of Hamiltonian Cycle and Matching Problem on Dense Graphs , 1993, J. Algorithms.
[13] S. S. Sengupta,et al. The traveling salesman problem , 1961 .
[14] Meena Mahajan,et al. Parameterizing above or below guaranteed values , 2009, J. Comput. Syst. Sci..
[15] Michael R. Fellows,et al. Crown Structures for Vertex Cover Kernelization , 2007, Theory of Computing Systems.
[16] Andreas Björklund. Determinant Sums for Undirected Hamiltonicity , 2014, SIAM J. Comput..
[17] Michael R. Fellows,et al. Linear Kernels in Linear Time, or How to Save k Colors in O(n2) Steps , 2004, WG.
[18] Meena Mahajan,et al. Parametrizing Above Guaranteed Values: MaxSat and MaxCut , 1997, Electron. Colloquium Comput. Complex..
[19] Jörg Flum,et al. Parameterized Complexity Theory , 2006, Texts in Theoretical Computer Science. An EATCS Series.
[20] O. Ore. Note on Hamilton Circuits , 1960 .
[21] Mark Jones,et al. Max-Cut Parameterized above the Edwards-Erdős Bound , 2012, ICALP.
[22] Michael R. Fellows,et al. Blow-Ups, Win/Win's, and Crown Rules: Some New Directions in FPT , 2003, WG.
[23] Mam Riess Jones. Color Coding , 1962, Human factors.
[24] Reinhard Diestel,et al. Graph Theory , 1997 .
[25] Noga Alon,et al. Color-coding , 1995, JACM.
[26] Roland Häggkvist. On the structure of Non-Hamiltonian Graphs 1 , 1992, Comb. Probab. Comput..
[27] Ronald J. Gould. Recent Advances on the Hamiltonian Problem: Survey III , 2014, Graphs Comb..
[28] Richard M. Karp,et al. Dynamic programming meets the principle of inclusion and exclusion , 1982, Oper. Res. Lett..
[29] Gregory Gutin,et al. Vertex Cover Problem Parameterized Above and Below Tight Bounds , 2009, Theory of Computing Systems.
[30] Gregory Gutin,et al. Parameterized Traveling Salesman Problem: Beating the Average , 2016, SIAM J. Discret. Math..
[31] Rolf Niedermeier,et al. A Structural View on Parameterizing Problems: Distance from Triviality , 2004, IWPEC.
[32] Noga Alon,et al. Solving MAX-r-SAT Above a Tight Lower Bound , 2010, SODA '10.
[33] Stefan Szeider,et al. A Probabilistic Approach to Problems Parameterized above or below Tight Bounds , 2009, IWPEC.