Hamiltonicity below Dirac's condition

Dirac's theorem (1952) is a classical result of graph theory, stating that an $n$-vertex graph ($n \geq 3$) is Hamiltonian if every vertex has degree at least $n/2$. Both the value $n/2$ and the requirement for every vertex to have high degree are necessary for the theorem to hold. In this work we give efficient algorithms for determining Hamiltonicity when either of the two conditions are relaxed. More precisely, we show that the Hamiltonian cycle problem can be solved in time $c^k \cdot n^{O(1)}$, for some fixed constant $c$, if at least $n-k$ vertices have degree at least $n/2$, or if all vertices have degree at least $n/2-k$. The running time is, in both cases, asymptotically optimal, under the exponential-time hypothesis (ETH). The results extend the range of tractability of the Hamiltonian cycle problem, showing that it is fixed-parameter tractable when parameterized below a natural bound. In addition, for the first parameterization we show that a kernel with $O(k)$ vertices can be found in polynomial time.

[1]  G. Dirac Some Theorems on Abstract Graphs , 1952 .

[2]  Stefan Szeider,et al.  A probabilistic approach to problems parameterized above or below tight bounds , 2009, J. Comput. Syst. Sci..

[3]  John Adrian Bondy,et al.  A method in graph theory , 1976, Discret. Math..

[4]  Didem Gözüpek,et al.  On one extension of Dirac's theorem on Hamiltonicity , 2017, Discret. Appl. Math..

[5]  M. Held,et al.  A dynamic programming approach to sequencing problems , 1962, ACM National Meeting.

[6]  D. Kuhn,et al.  Hamilton cycles in graphs and hypergraphs: an extremal perspective , 2014, 1402.4268.

[7]  Richard Bellman,et al.  Dynamic Programming Treatment of the Travelling Salesman Problem , 1962, JACM.

[8]  Russell Impagliazzo,et al.  Which Problems Have Strongly Exponential Complexity? , 2001, J. Comput. Syst. Sci..

[9]  Fedor V. Fomin,et al.  Finding Detours is Fixed-Parameter Tractable , 2016, ICALP.

[10]  Michal Pilipczuk,et al.  Parameterized Algorithms , 2015, Springer International Publishing.

[11]  Hao Li,et al.  Generalizations of Dirac's theorem in Hamiltonian graph theory - A survey , 2013, Discret. Math..

[12]  Marek Karpinski,et al.  On the Parallel Complexity of Hamiltonian Cycle and Matching Problem on Dense Graphs , 1993, J. Algorithms.

[13]  S. S. Sengupta,et al.  The traveling salesman problem , 1961 .

[14]  Meena Mahajan,et al.  Parameterizing above or below guaranteed values , 2009, J. Comput. Syst. Sci..

[15]  Michael R. Fellows,et al.  Crown Structures for Vertex Cover Kernelization , 2007, Theory of Computing Systems.

[16]  Andreas Björklund Determinant Sums for Undirected Hamiltonicity , 2014, SIAM J. Comput..

[17]  Michael R. Fellows,et al.  Linear Kernels in Linear Time, or How to Save k Colors in O(n2) Steps , 2004, WG.

[18]  Meena Mahajan,et al.  Parametrizing Above Guaranteed Values: MaxSat and MaxCut , 1997, Electron. Colloquium Comput. Complex..

[19]  Jörg Flum,et al.  Parameterized Complexity Theory , 2006, Texts in Theoretical Computer Science. An EATCS Series.

[20]  O. Ore Note on Hamilton Circuits , 1960 .

[21]  Mark Jones,et al.  Max-Cut Parameterized above the Edwards-Erdős Bound , 2012, ICALP.

[22]  Michael R. Fellows,et al.  Blow-Ups, Win/Win's, and Crown Rules: Some New Directions in FPT , 2003, WG.

[23]  Mam Riess Jones Color Coding , 1962, Human factors.

[24]  Reinhard Diestel,et al.  Graph Theory , 1997 .

[25]  Noga Alon,et al.  Color-coding , 1995, JACM.

[26]  Roland Häggkvist On the structure of Non-Hamiltonian Graphs 1 , 1992, Comb. Probab. Comput..

[27]  Ronald J. Gould Recent Advances on the Hamiltonian Problem: Survey III , 2014, Graphs Comb..

[28]  Richard M. Karp,et al.  Dynamic programming meets the principle of inclusion and exclusion , 1982, Oper. Res. Lett..

[29]  Gregory Gutin,et al.  Vertex Cover Problem Parameterized Above and Below Tight Bounds , 2009, Theory of Computing Systems.

[30]  Gregory Gutin,et al.  Parameterized Traveling Salesman Problem: Beating the Average , 2016, SIAM J. Discret. Math..

[31]  Rolf Niedermeier,et al.  A Structural View on Parameterizing Problems: Distance from Triviality , 2004, IWPEC.

[32]  Noga Alon,et al.  Solving MAX-r-SAT Above a Tight Lower Bound , 2010, SODA '10.

[33]  Stefan Szeider,et al.  A Probabilistic Approach to Problems Parameterized above or below Tight Bounds , 2009, IWPEC.