Electrochemically-switchable emission and absorption by using luminescent Lanthanide(III) complex and electrochromic molecule toward novel display device with dual emissive and reflective mode

Electroswitching of emission and coloration was achieved by a combination of a luminescent Eu(III) complex and an electrochromic molecule of diheptyl viologen (HV 2+ ), indicating that the complex-molecule combination could be used as a display material with dual emissive and reflective modes. The coloration of the material was associated with the electrochromism of HV 2+

[1]  Clemens Bechinger,et al.  Photoelectrochromic windows and displays , 1996, Nature.

[2]  Toshihiko Nagamura,et al.  Enhanced lasing properties of dissymmetric Eu(III) complex with bidentate phosphine ligands. , 2007, The journal of physical chemistry. A.

[3]  John R. Reynolds,et al.  Establishing dual electrogenerated chemiluminescence and multicolor electrochromism in functional ionic transition-metal complexes. , 2012, Journal of the American Chemical Society.

[4]  Tsuyoshi Kawai,et al.  Eu(III) emission band changes caused by peripheral C-H/O hydrogen bonding. , 2012, Dalton transactions.

[5]  Gunnar A. Niklasson,et al.  Electrochromics for smart windows: thin films of tungsten oxide and nickel oxide, and devices based on these , 2007 .

[6]  Andrew G. Glen,et al.  APPL , 2001 .

[7]  Hiroshi Tsukube,et al.  "ON-OFF" switching of europium complex luminescence coupled with a ligand redox process. , 2012, Chemical communications.

[8]  John R. Reynolds,et al.  An in situ colorimetric measurement study of electrochromism in the di-n-heptyl viologen system , 2008, Displays.

[9]  A. P. de Silva,et al.  Molecular-scale logic gates. , 2004, Chemistry.

[10]  Norihisa Kobayashi,et al.  Electrochemically controllable emission and coloration by using europium(III) complex and viologen derivatives. , 2011, Chemical communications.

[11]  Norihisa Kobayashi,et al.  Thermoswitchable emission and coloration of a composite material containing a europium(III) complex and a fluoran dye , 2013 .

[12]  Toshiyuki Watanabe,et al.  Reversible Fluorescent On–Off Recording in a Highly Transparent Polymeric Material Utilizing Fluorescent Resonance Energy Transfer (FRET) Induced by Heat Treatment , 2008 .

[13]  Stephen M. Burkinshaw,et al.  Reversibly thermochromic systems based on pH-sensitive functional dyes , 1998 .

[14]  T. Gunnlaugsson,et al.  Lanthanide macrocyclic quinolyl conjugates as luminescent molecular-level devices. , 2001, Journal of the American Chemical Society.

[15]  Masahiro Irie,et al.  Digital photoswitching of fluorescence based on the photochromism of diarylethene derivatives at a single-molecule level. , 2004, Journal of the American Chemical Society.

[16]  Yuichi Watanabe,et al.  Improvement in reflective-emissive dual-mode properties of electrochemical displays by electrode modification. , 2011, Physical chemistry chemical physics : PCCP.

[17]  Shuichi Uchikoga,et al.  67.3: Electrochemical Reaction Display with Dual Reflective and Emissive Modes , 2007 .

[18]  Xiao-Jing Wang,et al.  Display device with dual emissive and reflective modes , 2005 .

[19]  Yuichi Watanabe,et al.  Continuous-tone images obtained using three primary-color electrochromic cells containing gel electrolyte , 2012 .

[20]  Kazuki Yoshimura,et al.  Optical switching of Mg-rich Mg–Ni alloy thin films , 2002 .

[21]  Norihisa Kobayashi,et al.  Electrochemical and spectroscopic characteristics of dimethyl terephthalate , 2004 .

[22]  Udo Bach,et al.  Nanomaterials‐Based Electrochromics for Paper‐Quality Displays , 2002 .

[23]  Masahiro Irie,et al.  Organic chemistry: A digital fluorescent molecular photoswitch , 2002, Nature.

[24]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[25]  Yuichi Watanabe,et al.  Fabrication of Novel Reflective–Emissive Dual-mode Display Cell Based on Electrochemical Reaction , 2010 .

[26]  Tsuyoshi Kawai,et al.  Nondestructive luminescence intensity readout of a photochromic lanthanide(III) complex. , 2009, Chemical communications.

[27]  Mark A Rizzo,et al.  An improved cyan fluorescent protein variant useful for FRET , 2004, Nature Biotechnology.

[28]  Giacomo Bergamini,et al.  Polysulfurated pyrene-cored dendrimers: luminescent and electrochromic properties. , 2008, Chemistry.

[29]  J. Bünzli,et al.  Taking advantage of luminescent lanthanide ions. , 2005, Chemical Society reviews.

[30]  David Parker,et al.  Luminescent lanthanide sensors for pH, pO2 and selected anions , 2000 .

[31]  Norihisa Kobayashi,et al.  Electroswitching of emission and coloration with quick response and high reversibility in an electrochemical cell. , 2012, Chemistry, an Asian journal.

[32]  Masahiro Irie,et al.  Diarylethenes for Memories and Switches. , 2000, Chemical reviews.

[33]  Niko Hildebrandt,et al.  Lanthanide Complexes and Quantum Dots: A Bright Wedding for Resonance Energy Transfer , 2008 .

[34]  Ian Charles Sage,et al.  Thermochromic liquid crystals , 2011 .

[35]  Koen Binnemans,et al.  Lanthanide-based luminescent hybrid materials. , 2009, Chemical reviews.

[36]  Satoshi Shinoda,et al.  Dynamic cyclen-metal complexes for molecular sensing and chirality signaling. , 2013, Chemical Society reviews.

[37]  Robert Kostecki,et al.  Switchable mirrors based on nickel–magnesium films , 2001 .

[38]  Stephen Faulkner,et al.  Lanthanide Complexes for Luminescence Imaging Applications , 2005 .

[39]  T. Swager,et al.  Conjugated polymer-based chemical sensors. , 2000, Chemical reviews.