Considerations on nonlinear model predictive control techniques

Abstract The nonlinear model predictive control (NMPC) is an on-line application based on nonlinear convolution models. It is an appealing control methodology, but it is difficult to implement and its solution is not so performing since it unavoidably means to solve a usually large-scale, constrained, and multidimensional optimization. To increase the difficulty, this optimization problem is subject to computationally heavy differential and algebraic constraints constituting the same convolution model and the least squares nature of the objective function easily leads to narrow valleys and multimodality issues. Beyond a short review of the state-of-the-art, the paper is aimed at highlighting the possibility to exploit at best the intrinsic features of the specific system one is going to control using the NMPC. The idea is to give the NMPC the possibility to automatically select the best combination of algorithms (differential solvers and optimizers) in accordance with the specific problem to be solved. From this perspective, the NMPC could be easily extended to many scientific fields traditionally far from process systems and computer-aided process engineering and the user has not to worry about which specific differential solvers and optimizers are needed to solve his/her problem.

[1]  Tiziano Faravelli,et al.  The ignition, combustion and flame structure of carbon monoxide/hydrogen mixtures. Note 2: Fluid dynamics and kinetic aspects of syngas combustion , 2007 .

[2]  Costas D. Maranas,et al.  A Two-Stage Modeling and Solution Framework for Multisite Midterm Planning under Demand Uncertainty , 2000 .

[3]  Flavio Manenti,et al.  Kinetic models analysis , 2009 .

[4]  Ian T. Cameron,et al.  Analysis of dynamic process models for structural insight and model reduction—Part 1. Structural identification measures , 1997 .

[5]  Wolfgang Marquardt,et al.  A Two-Level Strategy of Integrated Dynamic Optimization and Control of Industrial Processes—a Case Study , 2002 .

[6]  F. Robert Jacobs,et al.  Enterprise resource planning (ERP)—A brief history , 2007 .

[7]  Iftekhar A. Karimi,et al.  Planning and scheduling of parallel semicontinuous processes. 1. Production planning , 1997 .

[8]  S. Joe Qin,et al.  An Overview of Nonlinear Model Predictive Control Applications , 2000 .

[9]  Rubens Maciel Filho,et al.  Fuzzy Model-Based Predictive Hybrid Control of Polymerization Processes , 2009 .

[10]  Wolfgang Marquardt,et al.  Dynamic predictive scheduling of operational strategies for continuous processes using mixed-logic dynamic optimization , 2007, Comput. Chem. Eng..

[11]  Efstratios N. Pistikopoulos,et al.  Perspectives in Multiparametric Programming and Explicit Model Predictive Control , 2009 .

[12]  Kim B. McAuley,et al.  A dynamic mathematical model for continuous solid-phase polymerization of nylon 6,6 , 2001 .

[13]  Flavio Manenti,et al.  Data Interpretation and Correlation , 2011 .

[14]  J. Rawlings,et al.  A new robust model predictive control method I: theory and computation , 2004 .

[15]  Filip Logist,et al.  Simulation of (bio)chemical processes with distributed parameters using Matlab , 2009 .

[16]  L. Biegler,et al.  Large-scale dynamic optimization for grade transitions in a low density polyethylene plant , 2002 .

[17]  Efstratios N. Pistikopoulos,et al.  Multiperiod Planning of Enterprise-wide Supply Chains Using an Operation Policy , 2007 .

[18]  L. Biegler,et al.  Optimal Grade Transitions in the High-Impact Polystyrene Polymerization Process , 2006 .

[19]  William Johns,et al.  Computer‐Aided Chemical Engineering , 2011 .

[20]  Jose M. Pinto,et al.  PLANNING AND SCHEDULING MODELS FOR REFINERY OPERATIONS , 2000 .

[21]  Darci Odloak,et al.  One-layer real time optimization of LPG production in the FCC unit : Procedure, advantages and disadvantages , 1998 .

[22]  Ignacio E. Grossmann,et al.  Dynamic Modeling and Decentralized Control of Supply Chains , 2001 .

[23]  Rodolphe L. Motard,et al.  Blocking and condensing design for quadratic dynamic matrix control using wavelets , 1994 .

[24]  Lorenz T. Biegler,et al.  Infeasible path optimization with sequential modular simulators , 1982 .

[25]  Byoung Chul Lee,et al.  A simulation study on continuous direct esterification process for poly(ethylene terephthalate) synthesis , 1997 .

[26]  James B. Rawlings,et al.  A new robust model predictive control method. II: examples , 2004 .

[27]  Lorenz T. Biegler Large-scale nonlinear programming: an integrating framework for enterprise-wide dynamic optimization , 2007 .

[28]  Michio Sugeno,et al.  Fuzzy identification of systems and its applications to modeling and control , 1985, IEEE Transactions on Systems, Man, and Cybernetics.

[29]  P J Vermeer,et al.  BLEND-CONTROL SYSTEM ALL BUT ELIMINATES REBLENDS FOR CANADIAN REFINER , 1997 .

[30]  Rubens Maciel Filho,et al.  Multivariable Nonlinear Advanced Control of Copolymerization Processes , 2010 .

[31]  P. Christofides,et al.  Model predictive control of nonlinear stochastic partial differential equations with application to a sputtering process , 2008 .

[32]  Joseph Z. Lu Challenging control problems and emerging technologies in enterprise optimization , 2001 .

[33]  Dale E. Seborg,et al.  Nonlinear Process Control , 1996 .

[34]  S. Joe Qin,et al.  A survey of industrial model predictive control technology , 2003 .

[35]  Nilay Shah,et al.  Pharmaceutical supply chains: key issues and strategies for optimisation , 2004, Comput. Chem. Eng..

[36]  Guido Buzzi-Ferraris New trends in building numerical programs , 2011 .

[37]  Gintaras V. Reklaitis,et al.  Perspectives on model based integration of process operations , 1996 .

[38]  Pierre Rouchon,et al.  Quality control of binary distillation columns via nonlinear aggregated models , 1991, Autom..

[39]  Jay H. Lee,et al.  An introduction to a dynamic plant-wide optimization strategy for an integrated plant , 2004, Comput. Chem. Eng..

[40]  David A. Tremblay,et al.  Using Simulation Technology to Improve Profitability In the Polymer Industry , 1999 .

[41]  Ian T. Cameron,et al.  A multi-model repository with manipulation and analysis tools , 2007, Comput. Chem. Eng..

[42]  M Anderson NEW EQUATIONS CALCULATE CLAUS UNIT SULFUR-RECOVERY EFFICIENCY , 1997 .

[43]  J. Richalet,et al.  Model predictive heuristic control: Applications to industrial processes , 1978, Autom..

[44]  Efstratios N. Pistikopoulos,et al.  Optimal grade transition and selection of closed-loop controllers in a gas-phase olefin polymerization fluidized bed reactor , 2003 .

[45]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[46]  A. L. Schiavon Júnior,et al.  Applications of an alternative formulation for one-layer real time optimization , 2000 .

[47]  Flavio Manenti,et al.  Nonlinear Model Predictive Control: A Self-Adaptive Approach , 2010 .

[48]  M. Rovaglio,et al.  Dynamic Modeling of a Poly(ethylene terephthalate) Solid-State Polymerization Reactor I: Detailed Model Development , 2004 .

[49]  Christodoulos A. Floudas,et al.  Mixed Integer Linear Programming in Process Scheduling: Modeling, Algorithms, and Applications , 2005, Ann. Oper. Res..

[50]  C. Floudas Global optimization in design and control of chemical process systems , 1998 .

[51]  William L. Luyben,et al.  Process Modeling, Simulation and Control for Chemical Engineers , 1973 .

[52]  Flavio Manenti,et al.  Exploiting C++ Polymorphism for Operational Optimization of Chemical Processes , 2010 .

[53]  Eduardo F. Camacho,et al.  Constrained Model Predictive Control , 2007 .

[54]  Flavio Manenti,et al.  Towards Dynamic Conceptual Design , 2009 .

[55]  Wolfgang Marquardt,et al.  Scenario-integrated on-line optimisation of batch reactors , 2003 .

[56]  Shankar Narasimhan,et al.  Data reconciliation & gross error detection: an intelligent use of process data , 1999 .

[57]  Christodoulos A. Floudas,et al.  Continuous-time versus discrete-time approaches for scheduling of chemical processes: a review , 2004, Comput. Chem. Eng..

[58]  Panagiotis D. Christofides,et al.  Predictive control of switched nonlinear systems with scheduled mode transitions , 2005, IEEE Transactions on Automatic Control.

[59]  Flavio Manenti,et al.  Fundamentals and Linear Algebra for the Chemical Engineer: Solving Numerical Problems , 2010 .

[60]  Josef Kallrath,et al.  Planning and scheduling in the process industry , 2002, OR Spectr..

[61]  Jay H. Lee,et al.  Model predictive control: past, present and future , 1999 .

[62]  H. H. Rosenbrock,et al.  An Automatic Method for Finding the Greatest or Least Value of a Function , 1960, Comput. J..

[63]  R. Kipp Martin,et al.  Large scale linear and integer optimization - a unified approach , 1998 .

[64]  Lucas Barcelos de Oliveira,et al.  Multi-agent Model Predictive Control of Signaling Split in Urban Traffic Networks ∗ , 2010 .

[65]  F. Manenti,et al.  A NEW STRATEGY TO IMPROVE THE PARAMETERS ESTIMATION , 2009 .

[66]  M. Rovaglio,et al.  Process Dynamic Optimization Using ROMeo , 2011 .

[67]  F. Allgöwer,et al.  A note on stability, robustness and performance of output feedback nonlinear model predictive control , 2003 .

[68]  Flavio Manenti,et al.  Outlier detection in large data sets , 2011, Comput. Chem. Eng..

[69]  D. Himmelblau,et al.  Optimization of Chemical Processes , 1987 .

[70]  J. M. Pinto,et al.  Mixed-Integer Programming Approach for Short-Term Crude Oil Scheduling , 2004 .

[71]  Flavio Manenti,et al.  MODELLING LONG-TERM DECISIONS TO LIMIT EFFECTS OF MARKET UNCERTAINTIES , 2009 .

[72]  Xiang Li,et al.  Robust supply chain performance via Model Predictive Control , 2009, Comput. Chem. Eng..

[73]  Kyu Yong Choi,et al.  Two-phase model for continuous final stage melt polycondensation of poly(ethylene terephthalate). 1. Steady-state analysis , 1991 .

[74]  B. Drozdowicz,et al.  Multitime-scale approach to real-time simulation of stiff dynamic systems , 1989 .

[75]  B. Moore Principal component analysis in linear systems: Controllability, observability, and model reduction , 1981 .

[76]  Stephen J. Wright,et al.  Nonlinear Predictive Control and Moving Horizon Estimation — An Introductory Overview , 1999 .

[77]  H. Jin Kim,et al.  Model predictive flight control using adaptive support vector regression , 2010, Neurocomputing.

[78]  Flavio Manenti,et al.  Corporate Production Planning For Industrial Gas Supply Chains Under Low-demand Conditions , 2011 .

[79]  Panagiotis D. Christofides,et al.  Stabilization of nonlinear systems with state and control constraints using Lyapunov-based predictive control , 2005, Proceedings of the 2005, American Control Conference, 2005..

[80]  Ignacio E. Grossmann,et al.  Retrospective on optimization , 2004, Comput. Chem. Eng..

[81]  Flavio Manenti,et al.  Efficient Numerical Solver for Partially Structured Differential and Algebraic Equation Systems , 2009 .

[82]  G. R. Sullivan,et al.  The development of an efficient optimal control package , 1978 .

[83]  M. N. Özişik,et al.  Finite Difference Methods in Heat Transfer , 2017 .

[84]  Flavio Manenti,et al.  Generalized Classes for Lower Levels of Supply Chain Management: Object-Oriented Approach , 2010 .

[85]  Lorenz T. Biegler,et al.  Feasible path optimization with sequential modular simulators , 1985 .

[86]  Flavio Manenti,et al.  Modelling in the Documentation Level Using Mosaic and Numerical Libraries , 2011 .

[87]  Flavio Manenti,et al.  Adaptive Data Reconciliation Coupling C++ and PRO/II and On-line Application by the Field , 2010 .

[88]  Nilay Shah,et al.  Process industry supply chains: Advances and challenges , 2005, Comput. Chem. Eng..

[89]  Doug Cooper,et al.  A Practical Multiple Model Adaptive Strategy for Multivariable Model Predictive Control , 2003 .

[90]  Peter J. Rousseeuw,et al.  Robust regression and outlier detection , 1987 .

[91]  H. V. Landeghem,et al.  Robust planning: a new paradigm for demand chain planning , 2002 .

[92]  R. L. Tousain,et al.  Dynamic optimization in business-wide process control , 2002 .

[93]  Gintaras V. Reklaitis,et al.  Enterprise-wide modeling & optimization - An overview of emerging research challenges and opportunities , 2007, Comput. Chem. Eng..

[94]  Lorenz T. Biegler,et al.  A software environment for simultaneous dynamic optimization , 2007, Comput. Chem. Eng..

[95]  M. Morari,et al.  Move blocking strategies in receding horizon control , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[96]  M. Rovaglio,et al.  Integrated Multilevel Optimization in Large-Scale Poly(Ethylene Terephthalate) Plants , 2008 .

[97]  Francis J. Doyle,et al.  Polymer grade transition control using advanced real-time optimization software , 2004 .

[98]  In Sun Kim,et al.  Two-phase model for continuous final-stage melt polycondensation of poly(ethylene terephthalate). III. Modeling of multiple reactors with multiple reaction zones , 2003 .

[99]  Flavio Manenti,et al.  Model Predictive Control of a Cvd Reactor for Production of Polysilicon Rods , 2010 .

[100]  Andreas Linhart,et al.  An aggregation model reduction method for one-dimensional distributed systems , 2012 .

[101]  Flavio Manenti,et al.  Dynamic Simulation of Lurgi-type Reactor for Methanol Synthesis , 2011 .

[102]  Flavio Manenti,et al.  Criteria for Outliers Detection in Nonlinear Regression Problems , 2009 .

[103]  David Q. Mayne,et al.  Constrained model predictive control: Stability and optimality , 2000, Autom..

[104]  Christodoulos A. Floudas,et al.  Recent advances in global optimization for process synthesis, design and control: Enclosure of all solutions , 1999 .

[105]  Thomas F. Edgar,et al.  An improved method for nonlinear model reduction using balancing of empirical gramians , 2002 .

[106]  Chang-Kwon Kang,et al.  Modeling of solid‐state polymerization of poly(ethylene terephthalate) , 1998 .

[107]  M. Rovaglio,et al.  Operational planning in the management of programmed maintenances: a MILP approach , 2007 .

[108]  M. Sourander,et al.  Dynamic real-time optimization increases ethylene plant profits , 2006 .

[109]  Flavio Manenti,et al.  Sulfur Recovery Units: Adaptive Simulation and Model Validation on an Industrial Plant , 2010 .

[110]  Wolfgang Marquardt,et al.  Integration of Model Predictive Control and Optimization of Processes: Enabling Technology for Market Driven Process Operation , 2000 .

[111]  Davide Manca,et al.  Transients modeling for enterprise-wide optimization: Generalized framework and industrial case study , 2009 .

[112]  Robert Hooke,et al.  `` Direct Search'' Solution of Numerical and Statistical Problems , 1961, JACM.

[113]  Josef Kallrath,et al.  Combined strategic and operational planning – an MILP success story in chemical industry , 2002, OR Spectr..

[114]  Ignacio E. Grossmann,et al.  Challenges in the new millennium: product discovery and design, enterprise and supply chain optimization, global life cycle assessment , 2004, Comput. Chem. Eng..

[115]  Flavio Manenti,et al.  Coupling Performing Numerical Libraries and Detailed Simulators to Accurately Infer/Reconcile Stack Emissions of Incinerator Systems , 2010 .

[116]  P. Christofides,et al.  Multivariable Predictive Control of Thin Film Deposition Using a Stochastic PDE Model , 2005 .

[117]  Riccardo Scattolini,et al.  Architectures for distributed and hierarchical Model Predictive Control - A review , 2009 .

[118]  H. Simon,et al.  Administrative Behavior: A Study of Decision-Making Processes in Administrative Organization. , 1959 .

[119]  J. Linton,et al.  Sustainable supply chains: An introduction , 2007 .

[120]  Christodoulos A. Floudas,et al.  Global optimization in the 21st century: Advances and challenges , 2005, Comput. Chem. Eng..

[121]  Lorenz T. Biegler,et al.  Simultaneous dynamic optimization strategies: Recent advances and challenges , 2006, Comput. Chem. Eng..

[122]  Kyu Yong Choi,et al.  Two-phase model for continuous final-stage melt polycondensation of poly(ethylene terephthalate). 2. Analysis of dynamic behavior , 1991 .

[123]  Victor M. Zavala,et al.  Large-scale nonlinear programming using IPOPT: An integrating framework for enterprise-wide dynamic optimization , 2009, Comput. Chem. Eng..

[124]  Jose A. Romagnoli,et al.  Data Processing and Reconciliation for Chemical Process Operations , 1999 .

[125]  Flavio Manenti,et al.  Interpolation and Regression Models for the Chemical Engineer: Solving Numerical Problems , 2010 .

[126]  Ian K. Craig,et al.  Economic assessment of advanced process control – A survey and framework , 2008 .

[127]  James B. Rawlings,et al.  Tutorial overview of model predictive control , 2000 .

[128]  Flavio Manenti,et al.  A Combination of Parallel Computing and Object-Oriented Programming to Improve Optimizer Robustness and Efficiency , 2010 .

[129]  Jose M. Pinto,et al.  Multiperiod Optimization for Production Planning of Petroleum Refineries , 2005 .

[130]  P. Rousseeuw Least Median of Squares Regression , 1984 .

[131]  Thomas F. Edgar,et al.  Process Dynamics and Control , 1989 .

[132]  Andrey V. Savkin,et al.  Model predictive control of relative blood volume and heart rate during hemodialysis , 2010, Medical & Biological Engineering & Computing.

[133]  Frank Allgöwer,et al.  The quasi-infinite horizon approach to nonlinear model predictive control , 2003 .

[134]  D. M. Prett,et al.  Optimization and constrained multivariable control of a catalytic cracking unit , 1980 .

[135]  G. Buzzi-ferraris,et al.  Planning of experiments and kinetic analysis , 1999 .

[136]  Ferenc Friedler,et al.  Process Systems Engineering , 2012 .

[137]  Marco Restelli,et al.  Considerations on the steady-state modeling of methanol synthesis fixed-bed reactor , 2011 .

[138]  Peter L. Lee,et al.  A multiple model, state feedback strategy for robust control of non-linear processes , 2007, Comput. Chem. Eng..

[139]  Flavio Manenti From Reacting to Predicting Technologies: A Novel Performance Monitoring Technique Based on Detailed Dynamic Models , 2009 .

[140]  Victor M. Zavala,et al.  Dynamic optimization of a semi-batch reactor for polyurethane production , 2005 .

[141]  L. Biegler An overview of simultaneous strategies for dynamic optimization , 2007 .

[142]  José M. Pinto,et al.  A general modeling framework for the operational planning of petroleum supply chains , 2004, Comput. Chem. Eng..

[143]  Wolfgang Dahmen,et al.  Introduction to Model Based Optimization of Chemical Processes on Moving Horizons , 2001 .

[144]  Panagiotis D. Christofides,et al.  Distributed model predictive control of nonlinear process systems , 2009 .

[145]  Rubens Maciel Filho,et al.  Fuzzy cognitive approach of a molecular distillation process , 2011 .

[146]  C. R. Cutler,et al.  Dynamic matrix control¿A computer control algorithm , 1979 .

[147]  Vanina Estrada,et al.  Addressing Long-Term Biorestoration in Eutrophic Lakes as an Optimal Control Problem, Under Different Scenarios , 2009 .

[148]  Ignacio E. Grossmann,et al.  A model predictive control strategy for supply chain optimization , 2003, Comput. Chem. Eng..