Rotary ultrasonic machining— a new cutting process and its performance

Abstract In conventional ultrasonic machining (USM), brittle materials are machined by using ultrasonic impacts on the workpiece, through a medium of abrasive slurry. In this paper a new cutting process that resulted due to introduction of an additional parameter, namely the rotation of the workpiece during the machining, is presented. This may be called ‘rotary ultrasonic machining’. The material removal rates (MRR) in rotary USM are up to four times those in conventional USM. The MRR increases with increase in speed of rotation of workpiece. An explanation for the superior performance of rotary USM is presented. The performance of rotary USM as a function of static load, abrasive grain size, concentration of abrasive slurry, diameter of tool and ratio of diameters of hollow tools, is studied and the parameters are optimized for minimum machining time or maximum material removal rate. Comparisons are made with conventional USM.