Towards Interactive Construction of Topical Hierarchy: A Recursive Tensor Decomposition Approach
暂无分享,去创建一个
[1] Jiawei Han,et al. Automatic Construction and Ranking of Topical Keyphrases on Collections of Short Documents , 2014, SDM.
[2] A. McCallum,et al. Topical N-Grams: Phrase and Topic Discovery, with an Application to Information Retrieval , 2007, Seventh IEEE International Conference on Data Mining (ICDM 2007).
[3] Jiawei Han,et al. Content coverage maximization on word networks for hierarchical topic summarization , 2013, CIKM.
[4] W. Bruce Croft,et al. Discovering and Comparing Topic Hierarchies , 2000, RIAO.
[5] Jay Pujara. Large-Scale Hierarchical Topic Models , 2012 .
[6] Clare R. Voss,et al. Scalable Topical Phrase Mining from Text Corpora , 2014, Proc. VLDB Endow..
[7] Chong Wang,et al. Stochastic variational inference , 2012, J. Mach. Learn. Res..
[8] Hanna M. Wallach,et al. Topic modeling: beyond bag-of-words , 2006, ICML.
[9] Thomas L. Griffiths,et al. Hierarchical Topic Models and the Nested Chinese Restaurant Process , 2003, NIPS.
[10] Robert V. Lindsey,et al. A Phrase-Discovering Topic Model Using Hierarchical Pitman-Yor Processes , 2012, EMNLP.
[11] Thomas Hofmann,et al. Unsupervised Learning by Probabilistic Latent Semantic Analysis , 2004, Machine Learning.
[12] Dongwoo Kim,et al. Modeling topic hierarchies with the recursive chinese restaurant process , 2012, CIKM.
[13] Alexander J. Smola,et al. Nested Chinese Restaurant Franchise Process: Applications to User Tracking and Document Modeling , 2013, ICML.
[14] Wei Li,et al. Mixtures of hierarchical topics with Pachinko allocation , 2007, ICML '07.
[15] Haixun Wang,et al. Automatic taxonomy construction from keywords , 2012, KDD.
[16] Max Welling,et al. Fast collapsed gibbs sampling for latent dirichlet allocation , 2008, KDD.
[17] Mark Steyvers,et al. Finding scientific topics , 2004, Proceedings of the National Academy of Sciences of the United States of America.
[18] Alexander J. Smola,et al. An architecture for parallel topic models , 2010, Proc. VLDB Endow..
[19] Michael I. Jordan,et al. Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..
[20] Jordan L. Boyd-Graber,et al. Mr. LDA: a flexible large scale topic modeling package using variational inference in MapReduce , 2012, WWW.
[21] John D. Lafferty,et al. Visualizing Topics with Multi-Word Expressions , 2009, 0907.1013.
[22] P. Strevens. Iii , 1985 .
[23] Andrew McCallum,et al. Efficient methods for topic model inference on streaming document collections , 2009, KDD.
[24] Benjamin C. M. Fung,et al. Hierarchical Document Clustering using Frequent Itemsets , 2003, SDM.
[25] Yinan Zhang,et al. A phrase mining framework for recursive construction of a topical hierarchy , 2013, KDD.
[26] James R. Foulds,et al. Stochastic collapsed variational Bayesian inference for latent Dirichlet allocation , 2013, KDD.
[27] Anima Anandkumar,et al. Tensor decompositions for learning latent variable models , 2012, J. Mach. Learn. Res..
[28] Alexander J. Smola,et al. Reducing the sampling complexity of topic models , 2014, KDD.
[29] Daniel M. Roy,et al. Complexity of Inference in Latent Dirichlet Allocation , 2011, NIPS.
[30] Max Welling,et al. Distributed Algorithms for Topic Models , 2009, J. Mach. Learn. Res..
[31] Alexander J. Smola,et al. Online Inference for the Infinite Topic-Cluster Model: Storylines from Streaming Text , 2011, AISTATS.
[32] Wei Li,et al. Pachinko allocation: DAG-structured mixture models of topic correlations , 2006, ICML.