A graphical method of internal model controller stability analysis for MIMO systems

A graphical method for a two-input two-output (TITO) system to compute all feasible stable region is proposed in this paper. It is the first time the stability region of the internal model controller parameters is given in the parameter space for multivariable system. The internal model controller can be designed by effective open-loop transfer function (EOTF). Next, the parameter space is divided into stable and unstable regions. Finally, the example is presented to demonstrate the validity of the proposed method.

[1]  Fernando Morilla,et al.  Inverted decoupling internal model control for square stable multivariable time delay systems , 2014 .

[2]  R. K. Wood,et al.  Terminal composition control of a binary distillation column , 1973 .

[3]  Brett Ninness,et al.  Integral constraints on the accuracy of least-squares estimation , 1996, Autom..

[4]  S. Mossaheb,et al.  A Nyquist type stability criterion for linear multivariable delayed systems , 1980 .

[5]  Min Wu,et al.  Tuning of multi-loop PI controllers based on gain and phase margin specifications , 2011 .

[6]  Feng Hao,et al.  A multivariable IMC-PID method for non-square large time delay systems using NPSO algorithm , 2013 .

[7]  Boris T. Polyak,et al.  Stability regions in the parameter space: D-decomposition revisited , 2006, Autom..

[8]  Tong Heng Lee,et al.  Graphical methods for computation of stabilizing gain ranges for TITO systems , 2011, 2011 9th IEEE International Conference on Control and Automation (ICCA).

[9]  Saurabh Srivastava,et al.  A PI/PID controller for time delay systems with desired closed loop time response and guaranteed gain and phase margins , 2016 .

[10]  D. D. Siljak,et al.  Analysis and Synthesis of Feedback Control Systems in the Parameter Plane I-Linear Continuous Systems , 1964, IEEE Transactions on Applications and Industry.

[11]  Allan M. Krall On the Michailov Criterion for Exponential Polynomials , 1966 .

[12]  Shiqi Zheng,et al.  A graphical tuning method of fractional order proportional integral derivative controllers for interval fractional order plant , 2014 .

[13]  Peilin Fu,et al.  Robust Stability of Quasi-Polynomials: Frequency-Sweeping Conditions and Vertex Tests , 2008, IEEE Transactions on Automatic Control.

[14]  Moonyong Lee,et al.  Independent design of multi-loop PI/PID controllers for interacting multivariable processes , 2010 .

[15]  Min Wu,et al.  Exact computation of loop gain margins of multivariable feedback systems , 2010 .

[16]  Qing-Guo Wang,et al.  A graphical approach to computing loop gain margins for TITO systems , 2014 .

[17]  Chang-Chieh Hang,et al.  A quasi-LMI approach to computing stabilizing parameter ranges of multi-loop PID controllers , 2007 .

[18]  P. Gawthrop,et al.  Identification of time delays using a polynomial identification method , 1985 .

[19]  Qing-Guo Wang,et al.  Development of D-decomposition method for computing stabilizing gain ranges for general delay systems , 2015 .

[20]  Carlos E. Garcia,et al.  Internal model control. 2. Design procedure for multivariable systems , 1985 .

[21]  E. Bristol On a new measure of interaction for multivariable process control , 1966 .

[22]  Shang-Hong Shih,et al.  Graphical computation of gain and phase margin specifications-oriented robust PID controllers for uncertain systems with time-varying delay , 2010, Proceedings of the 29th Chinese Control Conference.

[23]  E. A. King-Smith,et al.  Stability analysis of linear continuous time-delay feedback systems† , 1971 .