Generalized Savitzky-Golay filters for identification of nonstationary systems

Abstract The problem of identification of nonstationary systems using noncausal estimation schemes is considered and a new class of identification algorithms, combining the basis functions approach with local estimation technique, is described. Unlike the classical basis function estimation schemes, the proposed local basis function estimators are not used to obtain interval approximations of the parameter trajectory, but provide a sequence of point estimates corresponding to consecutive instants of time. Based on the results of theoretical analysis conducted for nonstationary finite impulse response systems the paper proposes two mechanisms for adaptive selection of the number of basis functions and the size of the local analysis window.

[1]  J. Mendel,et al.  Discrete Techniques of Parameter Estimation: The Equation Error Formulation , 1973 .

[2]  Yves Grenier,et al.  Time-dependent ARMA modeling of nonstationary signals , 1983 .

[3]  Maciej Niedzwiecki,et al.  New Approach to Noncausal Identification of Nonstationary Stochastic FIR Systems Subject to Both Smooth and Abrupt Parameter Changes , 2012, IEEE Transactions on Automatic Control.

[4]  A. Willsky,et al.  Time-varying parametric modeling of speech☆ , 1983 .

[5]  J. Norton Optimal smoothing in the identification of linear time-varying systems , 1975 .

[6]  Weifeng Liu,et al.  Kernel Adaptive Filtering: A Comprehensive Introduction , 2010 .

[7]  K. Chon,et al.  A Robust Time-Varying Identification Algorithm Using Basis Functions , 2003, Annals of Biomedical Engineering.

[8]  H. Akaike Statistical predictor identification , 1970 .

[9]  Spilios D. Fassois,et al.  Parametric time-domain methods for non-stationary random vibration modelling and analysis — A critical survey and comparison , 2006 .

[10]  Spilios D. Fassois,et al.  A polynomial-algebraic method for non-stationary TARMA signal analysis - Part I: The method , 1998, Signal Process..

[11]  Maciej Niedzwiecki,et al.  Functional Series Modelling Approach to Identification of Nonstationary Stochastic Systems , 1987, 1987 American Control Conference.

[12]  Ali H. Sayed,et al.  Fundamentals Of Adaptive Filtering , 2003 .

[13]  R. Dahlhaus Locally Stationary Processes , 2011, 1109.4174.

[14]  L. A. Liporace Linear estimation of nonstationary signals. , 1975, The Journal of the Acoustical Society of America.

[15]  S. Billings Nonlinear System Identification: NARMAX Methods in the Time, Frequency, and Spatio-Temporal Domains , 2013 .