The Gaussian Process Autoregressive Regression Model (GPAR)

Multi-output regression models must exploit dependencies between outputs to maximise predictive performance. The application of Gaussian processes (GPs) to this setting typically yields models that are computationally demanding and have limited representational power. We present the Gaussian Process Autoregressive Regression (GPAR) model, a scalable multi-output GP model that is able to capture nonlinear, possibly input-varying, dependencies between outputs in a simple and tractable way: the product rule is used to decompose the joint distribution over the outputs into a set of conditionals, each of which is modelled by a standard GP. GPAR's efficacy is demonstrated on a variety of synthetic and real-world problems, outperforming existing GP models and achieving state-of-the-art performance on established benchmarks.

[1]  Sarvapali D. Ramchurn,et al.  2008 International Conference on Information Processing in Sensor Networks Towards Real-Time Information Processing of Sensor Network Data using Computationally Efficient Multi-output Gaussian Processes , 2022 .

[2]  David Duvenaud,et al.  Automatic model construction with Gaussian processes , 2014 .

[3]  Andreas C. Damianou,et al.  Deep Gaussian processes and variational propagation of uncertainty , 2015 .

[4]  Nir Friedman,et al.  Gaussian Process Networks , 2000, UAI.

[5]  Jasper Snoek,et al.  Practical Bayesian Optimization of Machine Learning Algorithms , 2012, NIPS.

[6]  Timothy C. Coburn,et al.  Geostatistics for Natural Resources Evaluation , 2000, Technometrics.

[7]  Andreas C. Damianou,et al.  Nonlinear information fusion algorithms for data-efficient multi-fidelity modelling , 2017, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[8]  Matthias Bethge,et al.  Generative Image Modeling Using Spatial LSTMs , 2015, NIPS.

[9]  Neil D. Lawrence,et al.  Efficient Multioutput Gaussian Processes through Variational Inducing Kernels , 2010, AISTATS.

[10]  Edwin V. Bonilla,et al.  Collaborative Multi-output Gaussian Processes , 2014, UAI.

[11]  A. O'Hagan,et al.  Predicting the output from a complex computer code when fast approximations are available , 2000 .

[12]  Neil D. Lawrence,et al.  Efficient Modeling of Latent Information in Supervised Learning using Gaussian Processes , 2017, NIPS.

[13]  John P. Cunningham,et al.  Fast Gaussian process methods for point process intensity estimation , 2008, ICML '08.

[14]  Alex Graves,et al.  Conditional Image Generation with PixelCNN Decoders , 2016, NIPS.

[15]  Richard E. Turner,et al.  Tree-structured Gaussian Process Approximations , 2014, NIPS.

[16]  Nir Friedman,et al.  Probabilistic Graphical Models - Principles and Techniques , 2009 .

[17]  Yee Whye Teh,et al.  Semiparametric latent factor models , 2005, AISTATS.

[18]  Neil D. Lawrence,et al.  Computationally Efficient Convolved Multiple Output Gaussian Processes , 2011, J. Mach. Learn. Res..

[19]  Neil D. Lawrence,et al.  Sparse Convolved Gaussian Processes for Multi-output Regression , 2008, NIPS.

[20]  James Hensman,et al.  On Sparse Variational Methods and the Kullback-Leibler Divergence between Stochastic Processes , 2015, AISTATS.

[21]  Hugo Larochelle,et al.  The Neural Autoregressive Distribution Estimator , 2011, AISTATS.

[22]  Guodong Zhang,et al.  Differentiable Compositional Kernel Learning for Gaussian Processes , 2018, ICML.

[23]  Chao Yuan Conditional multi-output regression , 2011, The 2011 International Joint Conference on Neural Networks.

[24]  Neil D. Lawrence,et al.  Gaussian Processes for Big Data , 2013, UAI.

[25]  Rae. Z.H. Aliyev,et al.  Interpolation of Spatial Data , 2018, Biomedical Journal of Scientific & Technical Research.

[26]  Joshua B. Tenenbaum,et al.  Structure Discovery in Nonparametric Regression through Compositional Kernel Search , 2013, ICML.

[27]  Joshua B. Tenenbaum,et al.  Automatic Construction and Natural-Language Description of Nonparametric Regression Models , 2014, AAAI.

[28]  Loic Le Gratiet,et al.  RECURSIVE CO-KRIGING MODEL FOR DESIGN OF COMPUTER EXPERIMENTS WITH MULTIPLE LEVELS OF FIDELITY , 2012, 1210.0686.

[29]  H. Begleiter,et al.  Event related potentials during object recognition tasks , 1995, Brain Research Bulletin.

[30]  Edwin V. Bonilla,et al.  Multi-task Gaussian Process Prediction , 2007, NIPS.

[31]  Daniel Hernández-Lobato,et al.  Deep Gaussian Processes for Regression using Approximate Expectation Propagation , 2016, ICML.

[32]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[33]  Brendan J. Frey,et al.  Does the Wake-sleep Algorithm Produce Good Density Estimators? , 1995, NIPS.

[34]  Radford M. Neal Connectionist Learning of Belief Networks , 1992, Artif. Intell..

[35]  Michalis K. Titsias,et al.  Variational Learning of Inducing Variables in Sparse Gaussian Processes , 2009, AISTATS.

[36]  Neil D. Lawrence,et al.  Latent Force Models , 2009, AISTATS.

[37]  Multivariate Geostatistics , 2004 .

[38]  Richard E. Turner,et al.  A Unifying Framework for Gaussian Process Pseudo-Point Approximations using Power Expectation Propagation , 2016, J. Mach. Learn. Res..

[39]  Andrew Gordon Wilson,et al.  Gaussian Process Regression Networks , 2011, ICML.

[40]  Richard E. Turner,et al.  Gaussian Process Behaviour in Wide Deep Neural Networks , 2018, ICLR.

[41]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[42]  Andrew Gordon Wilson,et al.  Stochastic Variational Deep Kernel Learning , 2016, NIPS.