Evidence that homologous X-chromosome pairing requires transcription and Ctcf protein

[1]  Michael Q. Zhang,et al.  Analysis of the Vertebrate Insulator Protein CTCF-Binding Sites in the Human Genome , 2007, Cell.

[2]  Jeannie T. Lee,et al.  Identification of a Ctcf cofactor, Yy1, for the X chromosome binary switch. , 2007, Molecular cell.

[3]  Jennifer A. Erwin,et al.  The DXPas34 repeat regulates random and imprinted X inactivation. , 2007, Developmental cell.

[4]  Rolf Ohlsson,et al.  CTCF binding at the H19 imprinting control region mediates maternally inherited higher-order chromatin conformation to restrict enhancer access to Igf2. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[5]  P. Avner,et al.  An essential role for the DXPas34 tandem repeat and Tsix transcription in the counting process of X chromosome inactivation. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[6]  Hui Ling Chen,et al.  CTCF Mediates Interchromosomal Colocalization Between Igf2/H19 and Wsb1/Nf1 , 2006, Science.

[7]  Jeannie T. Lee,et al.  A transient heterochromatic state in Xist preempts X inactivation choice without RNA stabilization. , 2006, Molecular cell.

[8]  Roland Eils,et al.  Transient colocalization of X-inactivation centres accompanies the initiation of X inactivation , 2006, Nature Cell Biology.

[9]  Chia-Lun Tsai,et al.  Transient Homologous Chromosome Pairing Marks the Onset of X Inactivation , 2006, Science.

[10]  Jeannie T. Lee Regulation of X-Chromosome Counting by Tsix and Xite Sequences , 2005, Science.

[11]  Y. Hoki,et al.  Tsix silences Xist through modification of chromatin structure. , 2005, Developmental cell.

[12]  Gary D. Stormo,et al.  enoLOGOS: a versatile web tool for energy normalized sequence logos , 2005, Nucleic Acids Res..

[13]  P. Avner,et al.  Tsix transcription across the Xist gene alters chromatin conformation without affecting Xist transcription: implications for X-chromosome inactivation. , 2005, Genes & development.

[14]  R. Flavell,et al.  Interchromosomal associations between alternatively expressed loci , 2005, Nature.

[15]  R. Rowntree,et al.  Identification of Developmentally Specific Enhancers for Tsix in the Regulation of X Chromosome Inactivation , 2005, Molecular and Cellular Biology.

[16]  Jeannie T. Lee,et al.  Xite, X-inactivation intergenic transcription elements that regulate the probability of choice. , 2003, Molecular cell.

[17]  Jeannie T. Lee Homozygous Tsix mutant mice reveal a sex-ratio distortion and revert to random X-inactivation , 2002, Nature Genetics.

[18]  Rudolf Jaenisch,et al.  Chromosomal silencing and localization are mediated by different domains of Xist RNA , 2002, Nature Genetics.

[19]  Jeannie T. Lee,et al.  CTCF, a Candidate Trans-Acting Factor for X-Inactivation Choice , 2001, Science.

[20]  E. Li,et al.  Regulation of imprinted X-chromosome inactivation in mice by Tsix. , 2001, Development.

[21]  Victor V Lobanenkov,et al.  Functional association of CTCF with the insulator upstream of the H19 gene is parent of origin-specific and methylation-sensitive , 2000, Current Biology.

[22]  Shirley M. Tilghman,et al.  CTCF mediates methylation-sensitive enhancer-blocking activity at the H19/Igf2 locus , 2000, Nature.

[23]  G. Felsenfeld,et al.  Methylation of a CTCF-dependent boundary controls imprinted expression of the Igf2 gene , 2000, Nature.

[24]  Jeannie T. Lee,et al.  Targeted Mutagenesis of Tsix Leads to Nonrandom X Inactivation , 1999, Cell.

[25]  K. Münger,et al.  TID1, a human homolog of the Drosophila tumor suppressor l(2)tid, encodes two mitochondrial modulators of apoptosis with opposing functions. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[26]  Jeannie T. Lee,et al.  Tsix, a gene antisense to Xist at the X-inactivation centre , 1999, Nature Genetics.

[27]  H. Schöler,et al.  Formation of Pluripotent Stem Cells in the Mammalian Embryo Depends on the POU Transcription Factor Oct4 , 1998, Cell.

[28]  Dominic P. Norris,et al.  The product of the mouse Xist gene is a 15 kb inactive X-specific transcript containing no conserved ORF and located in the nucleus , 1992, Cell.

[29]  Carolyn J. Brown,et al.  The human XIST gene: Analysis of a 17 kb inactive X-specific RNA that contains conserved repeats and is highly localized within the nucleus , 1992, Cell.

[30]  M. Lyon Gene Action in the X-chromosome of the Mouse (Mus musculus L.) , 1961, Nature.