Exploring diradical chemistry: a carbon-centered radical may act as either an anion or electrophile through an orbital isomer.

Diradical intermediates, formed by thermolysis of alkynylcyclobutenones, can display radical, anion, or electrophilic character because of the existence of an orbital isomer with zwitterionic and cyclohexatrienone character. Our realization that water, alcohols, and certain substituents can induce the switch provides new opportunities in synthesis. For example, it can be used to shut down radical pathways and to give access to aryl carbonates and tetrasubstituted quinones.

[1]  M. Hirama,et al.  Biomimetic total synthesis of cyanosporaside aglycons from a single enediyne precursor through site-selective p-benzyne hydrochlorination. , 2014, Angewandte Chemie.

[2]  C. Perrin,et al.  Selectivity and isotope effects in hydronation of a naked aryl anion. , 2014, Journal of the American Chemical Society.

[3]  A. Basak,et al.  Asymmetric Garratt-Braverman cyclization: a route to axially chiral aryl naphthalene-amino acid hybrids. , 2014, The Journal of organic chemistry.

[4]  Théo P. Gonçalves,et al.  Organoytterbium Ate Complexes Extend the Value of Cyclobutenediones as Isoprene Equivalents** , 2013, Angewandte Chemie.

[5]  I. Alabugin,et al.  Concerted reactions that produce diradicals and zwitterions: electronic, steric, conformational, and kinetic control of cycloaromatization processes. , 2013, Chemical reviews.

[6]  C. Perrin,et al.  Reactivity of nucleophiles toward a p‐benzyne derived from an enediyne , 2013 .

[7]  P. Renaud,et al.  Role of equilibrium associations on the hydrogen atom transfer from the triethylborane-methanol complex. , 2013, The Journal of organic chemistry.

[8]  Théo P. Gonçalves,et al.  An efficient flow-photochemical synthesis of 5H-furanones leads to an understanding of torquoselectivity in cyclobutenone rearrangements. , 2012, Angewandte Chemie.

[9]  Daniel I. Knueppel,et al.  Tandem Electrocyclic Ring Opening/Radical Cyclization: Application to the Total Synthesis of Cribrostatin 6. , 2011, Tetrahedron.

[10]  Théo P. Gonçalves,et al.  New insights into cyclobutenone rearrangements: a total synthesis of the natural ROS-generating anti-cancer agent cribrostatin 6. , 2011, Chemistry.

[11]  Sayantan Mondal,et al.  Selectivity in Garratt-Braverman cyclization: an experimental and computational study. , 2011, Organic letters.

[12]  E. Jemmis,et al.  Which one is preferred: Myers-Saito cyclization of ene-yne-allene or Garratt-Braverman cyclization of conjugated bisallenic sulfone? A theoretical and experimental study. , 2009, Journal of the American Chemical Society.

[13]  Daniel I. Knueppel,et al.  Total synthesis of cribrostatin 6. , 2009, Angewandte Chemie.

[14]  R. Pascal,et al.  Thermal C1-C5 diradical cyclization of enediynes. , 2008, Journal of the American Chemical Society.

[15]  J. L. Wood,et al.  Expanding the scope of trialkylborane/water-mediated radical reactions. , 2007, Organic letters.

[16]  D. Harrowven,et al.  Thermally induced cyclobutenone rearrangements and domino reactions. , 2007, Angewandte Chemie.

[17]  H. Gottlieb,et al.  Sequential intermediates in the base-catalyzed conversion of bis(pi-conjugated propargyl) sulfones to 1,3-dihydrobenzo- and naphtho[c]thiophene-2,2-dioxides. , 2005, The Journal of organic chemistry.

[18]  D. Harrowven,et al.  Total synthesis of (-)-colombiasin A and (-)-elisapterosin B. , 2005, Angewandte Chemie.

[19]  Hua Yang,et al.  Biradicals/zwitterions from thermolysis of enyne-isocyanates. Application to the synthesis of 2(1H)-pyridones, benzofuro[3,2-c]pyridin-1(2H)-ones, 2,5-dihydro-1H-pyrido[4,3-b]indol-1-ones, and related compounds. , 2004, The Journal of organic chemistry.

[20]  S. Mandal,et al.  Chelation-controlled Bergman cyclization: synthesis and reactivity of enediynyl ligands. , 2003, Chemical reviews.

[21]  B. Engels,et al.  On the regioselectivity of the cyclization of enyne-ketenes: a computational investigation and comparison with the Myers-Saito and Schmittel reaction. , 2002, Journal of the American Chemical Society.

[22]  P. Schreiner,et al.  The cyclization of parent and cyclic hexa-1,3-dien-5-ynes--a combined theoretical and experimental study. , 2001, Chemistry.

[23]  P. Schreiner,et al.  Can Fulvenes Form from Enediynes? A Systematic High-Level Computational Study on Parent and Benzannelated Enediyne and Enyne−Allene Cyclizations , 2001 .

[24]  Peter R. Schreiner,et al.  Myers−Saito versus C2−C6 (“Schmittel”) Cyclizations of Parent and Monocyclic Enyne−Allenes: Challenges to Chemistry and Computation , 1999 .

[25]  P. Wipf,et al.  Efficient Synthesis of 1,4-Dihydro-2H-isoquinoline-3,5,8-triones via Cyclobutene Ring Expansion. , 1999, The Journal of organic chemistry.

[26]  H. W. Moore,et al.  Rearrangements of Cyclobutenones. Synthesis of N-Methyl-7,8-dihydrobenzophenanthridine-9,12-diols and Related Compounds , 1999 .

[27]  S. Eguchi,et al.  Formation of 2-[1-(Trimethylsilyl)alkylidene]-4-cyclopentene-1,3-dione from Lewis Acid-Catalyzed Reaction of Cyclobutenedione Monoacetal with Alkynylsilane: Novel Cationic 1,2-Silyl Migrative Ring Opening and Subsequent 5-Exo-Trig Ring Closure , 1997 .

[28]  Michael Schmittel,et al.  An Unprecedented Biradical Cyclization as an Alternative Pathway to the Myers–Saito Cycloaromatization in the Thermal Reactions of Enyne Allenes†‡ , 1996 .

[29]  Michael Schmittel,et al.  Eine neue Diradikal‐Cyclisierung als Alternative zur Myers‐Saito‐Cycloaromatisierung bei der thermischen Umsetzung von Eninallenen , 1996 .

[30]  K. Houk,et al.  Theoretical Predictions of Substituent Effects on the Thermal Electrocyclic Ring Openings of Cyclobutenones , 1996 .

[31]  H. W. Moore,et al.  Ring Expansion of 4-Alkynylcyclobutenones. Synthesis of Piperidinoquinones, Highly Substituted Dihydrophenanthridines, Benzophenanthridines, and the Naturally Occurring Pyrrolophenanthridine, Assoanine , 1996 .

[32]  H. Xia,et al.  Ring Expansion of 4-Alkynylcyclobutenones. Synthesis of Enantiomerically Pure Pyranoquinones from 4-(4-Oxo-1,6-enynyl)-4-hydroxycyclobutenones and 4-(4-Oxo-1,6-dialkynyl)-4-hydroxycyclobutenones , 1995 .

[33]  Michael Schmittel,et al.  Switching from the Myers reaction to a new thermal cyclization mode in enyne-allenes , 1995 .

[34]  S. Munk,et al.  DNA Cleavage by 4-Alkynyl-3-methoxy-4-hydroxycyclobutenones , 1994 .

[35]  K. Nicolaou,et al.  Chemistry and biology of natural and designed enediynes. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[36]  H. Xia,et al.  Rearrangements of 4-alkynylcyclobutenones. Annelated spiroepoxycyclohexadienones and quinones from 4-(1,5-alkadiynyl)-4-methoxy- or -hydroxycyclobutenones , 1992 .

[37]  H. W. Moore,et al.  Synthesis of p-chlorophenols (and-naphthols) from the thermal rearrangement of 4-chlorocyclobutenones , 1992 .

[38]  M. Taing,et al.  Annelation reactions of 4-alkynylcyclobutenones. Formation of methylenebenzofurans , 1991 .

[39]  Andrew G. Myers,et al.  Thermal generation of .alpha.,3-dehydrotoluene from (Z)-1,2,4-heptatrien-6-yne , 1989 .

[40]  J. Karlsson,et al.  Rearrangement of 4-alkynylcyclobutenones: a new synthesis of 1,4-benzoquinones , 1989 .

[41]  I. Saito,et al.  Biradical formation from acyclic conjugated eneyne-allene system related to neocarzinostatin and esperamicin-calichemicin , 1989 .

[42]  L. S. Liebeskind,et al.  A stereoselective, palladium-catalyzed route to 4-oxygenated 5-alkylidenecyclopentenones and 3-oxygenated 2-alkylideneindanones , 1987 .

[43]  J. Karlsson,et al.  (2-Alkynylethenyl)ketenes: A New Benzoquinone Synthesis. , 1985 .

[44]  T. P. Lockhart,et al.  Evidence for the reactive spin state of 1,4-dehydrobenzenes , 1981 .

[45]  W. Jones,et al.  Chirality as a probe for the structure of 1,2-cycloheptadiene and 1,2-cyclohexadiene , 1980 .

[46]  P. Garratt,et al.  Strained heterocycles. Properties of five-membered heterocycles fused to four-, six-, and eight-membered rings prepared by base-catalyzed rearrangement of 4-heterohepta-1,6-diynes , 1979 .

[47]  M. Dewar,et al.  Orbital isomerism in biradical processes , 1974 .

[48]  S. Braverman,et al.  Novel cyclization of diallenic sulfones , 1974 .

[49]  Robert G. Bergman,et al.  Reactive 1,4-dehydroaromatics , 1973 .

[50]  Robert G. Bergman,et al.  p-Benzyne. Generation as an intermediate in a thermal isomerization reaction and trapping evidence for the 1,4-benzenediyl structure , 1972 .

[51]  H. Hopf,et al.  Preparation of Benzene by Pyrolysis of cis‐ and trans‐1,3‐Hexadien‐5‐yne , 1969 .

[52]  H. Musso,et al.  Benzol durch Pyrolyse von cis- und trans- 1,3-Hexadien-5-in , 1969 .