Enumerating Extreme Points in Higher Dimensions

We consider the problem of enumerating all extreme points of a given set P of n points in d dimensions. We present a simple and practical algorithm which uses O(n) space and O(nm) time, where m is the number of extreme points of P. Our algorithm is designed to work even for highly degenerate input.We also present an algorithm to compute the depth of each point of the given set of n points in d-dimensions. This algorithm has time complexity O(n2) which significantly improves the O(n3) complexity of the naive algorithm.

[1]  Herbert Edelsbrunner,et al.  An O(n log² h) Time Algorithm for the Three-Dimensional Convex Hull Problem , 1991, SIAM J. Comput..

[2]  Ronald L. Graham,et al.  An Efficient Algorithm for Determining the Convex Hull of a Finite Planar Set , 1972, Inf. Process. Lett..

[3]  Michael Jünger,et al.  Computing the Convex Hull in the Euclidean Plane in Linear Expected Time , 1990, Applied Geometry And Discrete Mathematics.

[4]  Chr. Gram,et al.  A simple algorithm for building the 3-D convex hull , 1983, BIT Comput. Sci. Sect..

[5]  Raimund Seidel,et al.  Small-dimensional linear programming and convex hulls made easy , 1991, Discret. Comput. Geom..

[6]  Kenneth L. Clarkson,et al.  A Las Vegas algorithm for linear programming when the dimension is small , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.

[7]  Herbert Edelsbrunner,et al.  Algorithms in Combinatorial Geometry , 1987, EATCS Monographs in Theoretical Computer Science.

[8]  Kenneth L. Clarkson More Output-Sensitive Geometric Algorithms (Extended Abstract) , 1994, FOCS 1994.

[9]  Bernard Chazelle,et al.  An optimal convex hull algorithm and new results on cuttings , 1991, [1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science.

[10]  A. Rényi,et al.  über die konvexe Hülle von n zufällig gewählten Punkten , 1963 .

[11]  Bernard Chazelle OPTIMAL ALGORITHMS FOR COMPUTING DEPTHS AND LAYERS. , 1983 .

[12]  Henryk Wozniakowski,et al.  Complexity of linear programming , 1982, Oper. Res. Lett..

[13]  Michael Kallay Convex Hull Made Easy , 1986, Inf. Process. Lett..

[14]  David G. Kirkpatrick,et al.  The Ultimate Planar Convex Hull Algorithm? , 1986, SIAM J. Comput..

[15]  Selim G. Akl,et al.  A Fast Convex Hull Algorithm , 1978, Inf. Process. Lett..

[16]  Godfried T. Toussaint,et al.  Time- and storage-efficient implementation of an optimal planar convex hull algorithm , 1983, Image Vis. Comput..

[17]  P. Gritzmann,et al.  Applied geometry and discrete mathematics : the Victor Klee festschrift , 1991 .

[18]  Martin E. Dyer,et al.  Linear Time Algorithms for Two- and Three-Variable Linear Programs , 1984, SIAM J. Comput..

[19]  Jirí Matousek,et al.  Ray shooting and parametric search , 1992, STOC '92.

[20]  Micha Sharir,et al.  A Combinatorial Bound for Linear Programming and Related Problems , 1992, STACS.

[21]  Nimrod Megiddo,et al.  Linear Programming in Linear Time When the Dimension Is Fixed , 1984, JACM.

[22]  Jirí Matousek,et al.  Linear optimization queries , 1992, SCG '92.

[23]  Jan van Leeuwen,et al.  Maintenance of Configurations in the Plane , 1981, J. Comput. Syst. Sci..