Microscopically implicit-macroscopically explicit schemes for the BGK equation

In this work a new class of numerical methods for the BGK model of kinetic equations is introduced. The schemes proposed are implicit with respect to the distribution function, while the macroscopic moments are evolved explicitly. In this fashion, the stability condition on the time step coincides with a macroscopic CFL, evaluated using estimated values for the macroscopic velocity and sound speed. Thus the stability restriction does not depend on the relaxation time and it does not depend on the microscopic velocity of energetic particles either. With the technique proposed here, the updating of the distribution function requires the solution of a linear system of equations, even though the BGK model is highly non linear. Thus the proposed schemes are particularly effective for high or moderate Mach numbers, where the macroscopic CFL condition is comparable to accuracy requirements. We show results for schemes of order 1 and 2, and the generalization to higher order is sketched.

[1]  C. Chu Kinetic‐Theoretic Description of the Formation of a Shock Wave , 1965 .

[2]  P. Degond,et al.  The moment‐guided Monte Carlo method , 2009, 0908.0261.

[3]  Roberto Monaco,et al.  BGK-type models in strong reaction and kinetic chemical equilibrium regimes , 2005 .

[4]  Luc Mieussens,et al.  A smooth transition model between kinetic and hydrodynamic equations , 2005 .

[5]  James D. Baeder,et al.  Implicit Scheme for Hyperbolic Conservation Laws Using Nonoscillatory Reconstruction in Space and Time , 2007, SIAM J. Sci. Comput..

[6]  Shi Jin,et al.  A class of asymptotic-preserving schemes for kinetic equations and related problems with stiff sources , 2009, J. Comput. Phys..

[7]  Francis Filbet,et al.  Semilagrangian schemes applied to moving boundary problems for the BGK model of rarefied gas dynamics , 2009 .

[8]  P.,et al.  A hybrid kinetic-fluid model for solving the gas dynamics Boltzmann-BGK equation , 2004 .

[9]  Chi-Wang Shu,et al.  Strong Stability-Preserving High-Order Time Discretization Methods , 2001, SIAM Rev..

[10]  Kazuo Aoki,et al.  Numerical Analysis of a Supersonic Rarefied Gas Flow past a Flat Plate at an Angle of Attack , 1996 .

[11]  Lorenzo Pareschi,et al.  Numerical Solution of the Boltzmann Equation I: Spectrally Accurate Approximation of the Collision Operator , 2000, SIAM J. Numer. Anal..

[12]  E. Toro Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .

[13]  P. Bhatnagar,et al.  A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and Neutral One-Component Systems , 1954 .

[14]  Laure Saint-Raymond,et al.  From the BGK model to the Navier–Stokes equations , 2003 .

[15]  C. Cercignani Rarefied Gas Dynamics: From Basic Concepts to Actual Calculations , 2000 .

[16]  H. Neunzert,et al.  Particle Methods for the Boltzmann Equation , 1995, Acta Numerica.

[17]  Shi Jin,et al.  An Asymptotic Preserving Scheme for the ES-BGK Model of the Boltzmann Equation , 2010, J. Sci. Comput..

[18]  R. Illner,et al.  The mathematical theory of dilute gases , 1994 .

[19]  Gabriella Puppo,et al.  A hybrid method for hydrodynamic-kinetic flow - Part II - Coupling of hydrodynamic and kinetic models , 2012, J. Comput. Phys..

[20]  S. A. Schaaf Rarefied Gas Dynamics , 1969 .

[21]  Gabriella Puppo,et al.  A hybrid particle-grid method for hydrodynamic-kinetic flow -Part I- Reduction of DSMC noise in kinetic regimes , 2009 .

[22]  G. Bird Molecular Gas Dynamics and the Direct Simulation of Gas Flows , 1994 .

[23]  Shi Jin,et al.  Efficient Asymptotic-Preserving (AP) Schemes For Some Multiscale Kinetic Equations , 1999, SIAM J. Sci. Comput..

[24]  Lowell H. Holway,et al.  Kinetic Theory of Shock Structure Using an Ellipsoidal Distribution Function , 1965 .

[25]  Benoît Perthame,et al.  Global existence to the BGK model of Boltzmann equation , 1989 .

[26]  Gabriella Puppo,et al.  A hybrid method for hydrodynamic-kinetic flow Part I: A particle-grid method for reducing stochastic noise in kinetic regimes , 2011, J. Comput. Phys..

[27]  Aldo Frezzotti,et al.  A numerical investigation of the steady evaporation of a polyatomic gas , 2007 .

[28]  B. Perthame,et al.  A Consistent BGK-Type Model for Gas Mixtures , 2002 .

[29]  B. Perthame,et al.  Numerical passage from kinetic to fluid equations , 1991 .

[30]  Patrick Le Tallec,et al.  Numerical comparison between the Boltzmann and ES-BGK models for rarefied gases ☆ , 2002 .

[31]  B. Perthame,et al.  The Gaussian-BGK model of Boltzmann equation with small Prandtl number , 2000 .

[32]  Lorenzo Pareschi,et al.  An introduction to Monte Carlo method for the Boltzmann equation , 2001 .

[33]  Kun Xu,et al.  A unified gas-kinetic scheme for continuum and rarefied flows IV: Full Boltzmann and model equations , 2011, J. Comput. Phys..

[34]  T. Teichmann,et al.  Introduction to physical gas dynamics , 1965 .

[35]  Luc Mieussens,et al.  DISCRETE VELOCITY MODEL AND IMPLICIT SCHEME FOR THE BGK EQUATION OF RAREFIED GAS DYNAMICS , 2000 .

[36]  Kazuo Aoki,et al.  Numerical analysis of gas flows condensing on its plane condensed phase on the basis of kinetic theory , 1990 .

[37]  Giacomo Dimarco,et al.  Hybrid Multiscale Methods II. Kinetic Equations , 2008, Multiscale Model. Simul..

[38]  Kun Xu,et al.  A gas-kinetic BGK scheme for the Navier-Stokes equations and its connection with artificial dissipation and Godunov method , 2001 .

[39]  M. Carpenter,et al.  Additive Runge-Kutta Schemes for Convection-Diffusion-Reaction Equations , 2003 .

[40]  Luc Mieussens,et al.  A New Asymptotic Preserving Scheme Based on Micro-Macro Formulation for Linear Kinetic Equations in the Diffusion Limit , 2008, SIAM J. Sci. Comput..

[41]  Gabriella Puppo,et al.  Implicit–Explicit Schemes for BGK Kinetic Equations , 2007, J. Sci. Comput..

[42]  R. LeVeque Numerical methods for conservation laws , 1990 .

[43]  P. Degond,et al.  All speed scheme for the low Mach number limit of the isentropic Euler equations , 2009, 0908.1929.

[44]  J. Boon The Lattice Boltzmann Equation for Fluid Dynamics and Beyond , 2003 .

[45]  Gabriella Puppo,et al.  Velocity Discretization in Numerical Schemes for BGK Equations , 2008 .

[46]  G. Karniadakis,et al.  Microflows and Nanoflows: Fundamentals and Simulation , 2001 .

[47]  Juan-Chen Huang,et al.  Rarefied Flow Computations Using Nonlinear Model Boltzmann Equations , 1995 .

[48]  Luc Mieussens,et al.  Uniformly stable numerical schemes for the Boltzmann equation preserving the compressible Navier-Stokes asymptotics , 2008, J. Comput. Phys..

[49]  G. L. Caraffini,et al.  On Bgk Approximation for Reactive and Nonreactive Flows , 2007 .

[50]  Zhaoli Guo,et al.  Simple kinetic model for fluid flows in the nanometer scale. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[51]  L. Mieussens Discrete-Velocity Models and Numerical Schemes for the Boltzmann-BGK Equation in Plane and Axisymmetric Geometries , 2000 .