Epigenetic Priming in Cancer Initiation.

[1]  A. Órfão,et al.  Loss of Pax5 Exploits Sca1-BCR-ABLp190 Susceptibility to Confer the Metabolic Shift Essential for pB-ALL. , 2018, Cancer research.

[2]  A. Borkhardt,et al.  Five percent of healthy newborns have an ETV6-RUNX1 fusion as revealed by DNA-based GIPFEL screening. , 2018, Blood.

[3]  A. Puisieux,et al.  Cellular Pliancy and the Multistep Process of Tumorigenesis. , 2018, Cancer cell.

[4]  C. Brennan,et al.  Mutant-IDH1-dependent chromatin state reprogramming, reversibility, and persistence , 2017, Nature Genetics.

[5]  T. H. van der Kwast,et al.  LSD1-Mediated Epigenetic Reprogramming Drives CENPE Expression and Prostate Cancer Progression. , 2017, Cancer research.

[6]  Steven J. M. Jones,et al.  Clonal expansion and epigenetic reprogramming following deletion or amplification of mutant IDH1 , 2017, Proceedings of the National Academy of Sciences.

[7]  C. Zahnow,et al.  Chronic Cigarette Smoke-Induced Epigenomic Changes Precede Sensitization of Bronchial Epithelial Cells to Single-Step Transformation by KRAS Mutations. , 2017, Cancer cell.

[8]  O. Abdel-Wahab,et al.  Restoration of TET2 Function Blocks Aberrant Self-Renewal and Leukemia Progression , 2017, Cell.

[9]  D. Gutmann,et al.  Using Epigenetic Reprogramming to Treat Pediatric Brain Cancer. , 2017, Cancer cell.

[10]  Meng Li,et al.  Transcriptional Dependencies in Diffuse Intrinsic Pontine Glioma. , 2017, Cancer cell.

[11]  Tomas Radivoyevitch,et al.  Tet2 loss leads to hypermutagenicity in haematopoietic stem/progenitor cells , 2017, Nature Communications.

[12]  L. Steinmetz,et al.  Human haematopoietic stem cell lineage commitment is a continuous process , 2017, Nature Cell Biology.

[13]  A. Feinberg,et al.  Epigenomic reprogramming during pancreatic cancer progression links anabolic glucose metabolism to distant metastasis , 2017, Nature Genetics.

[14]  Salam A. Assi,et al.  Instructive Role of MLL-Fusion Proteins Revealed by a Model of t(4;11) Pro-B Acute Lymphoblastic Leukemia. , 2016, Cancer cell.

[15]  D. Vetrie,et al.  Epigenetic Reprogramming Sensitizes CML Stem Cells to Combined EZH2 and Tyrosine Kinase Inhibition. , 2016, Cancer discovery.

[16]  H. Pereira A latitudinal gradient for genetic diversity , 2016, Science.

[17]  I. Tannock,et al.  Limits to Personalized Cancer Medicine. , 2016, The New England journal of medicine.

[18]  Vinay Prasad,et al.  Perspective: The precision-oncology illusion , 2016, Nature.

[19]  S. Berger,et al.  Epigenetic Mechanisms of Longevity and Aging , 2016, Cell.

[20]  J. Khan,et al.  CD19 CAR immune pressure induces B-precursor acute lymphoblastic leukaemia lineage switch exposing inherent leukaemic plasticity , 2016, Nature Communications.

[21]  S. Thibodeau,et al.  The histone H3.3K36M mutation reprograms the epigenome of chondroblastomas , 2016, Science.

[22]  Thomas E. Bartlett,et al.  Epigenetic reprogramming of fallopian tube fimbriae in BRCA mutation carriers defines early ovarian cancer evolution , 2016, Nature Communications.

[23]  Dudley Lamming,et al.  High fat diet enhances stemness and tumorigenicity of intestinal progenitors , 2016, Nature.

[24]  J. Chang-Claude,et al.  Gene–environment interaction and risk of breast cancer , 2016, British Journal of Cancer.

[25]  S. Constantinescu,et al.  Infection Exposure is a Causal Factor in B-cell Precursor Acute Lymphoblastic Leukemia as a Result of Pax5-Inherited Susceptibility. , 2015, Cancer discovery.

[26]  I. Sánchez-García,et al.  Is lineage decision-making restricted during tumoral reprograming of haematopoietic stem cells? , 2015, Oncotarget.

[27]  Ying Mao,et al.  Dynamic epigenetic regulation of glioblastoma tumorigenicity through LSD1 modulation of MYC expression , 2015, Proceedings of the National Academy of Sciences.

[28]  B. Porse,et al.  Loss of TET2 in hematopoietic cells leads to DNA hypermethylation of active enhancers and induction of leukemogenesis , 2015, Genes & development.

[29]  Susan S. Taylor,et al.  Inactivation of a Gαs-PKA tumor suppressor pathway in skin stem cells initiates basal-cell carcinogenesis , 2015, Nature Cell Biology.

[30]  R. Jaenisch,et al.  TET1 is a tumor suppressor of hematopoietic malignancy , 2015, Nature Immunology.

[31]  K. Schwarz,et al.  Mechanisms of clonal evolution in childhood acute lymphoblastic leukemia , 2015, Nature Immunology.

[32]  A. Pappo,et al.  Pediatric solid tumor genomics and developmental pliancy , 2015, Oncogene.

[33]  Wei Li,et al.  Dnmt3a loss predisposes murine hematopoietic stem cells to malignant transformation. , 2015, Blood.

[34]  B. Vogelstein,et al.  Variation in cancer risk among tissues can be explained by the number of stem cell divisions , 2015, Science.

[35]  W. C. Chan,et al.  Transient expression of Bcl6 is sufficient for oncogenic function and induction of mature B-cell lymphoma , 2014, Nature Communications.

[36]  A. Borkhardt,et al.  Inherited susceptibility to pre B-ALL caused by germline transmission of PAX5 c.547G>A , 2014, Leukemia.

[37]  P. Beachy,et al.  Cellular origin of bladder neoplasia and tissue dynamics of its progression to invasive carcinoma , 2014, Nature Cell Biology.

[38]  Sara A. Grimm,et al.  Obesity, rather than diet, drives epigenomic alterations in colonic epithelium resembling cancer progression. , 2014, Cell metabolism.

[39]  Gary D Bader,et al.  Epigenomic alterations define lethal CIMP-positive ependymomas of infancy , 2014, Nature.

[40]  Lincoln D. Stein,et al.  Identification of pre-leukemic hematopoietic stem cells in acute leukemia , 2014, Nature.

[41]  I. Weissman,et al.  Preleukemic mutations in human acute myeloid leukemia affect epigenetic regulators and persist in remission , 2014, Proceedings of the National Academy of Sciences.

[42]  Rohini Rau-Murthy,et al.  A recurrent germline PAX5 mutation confers susceptibility to pre-B cell acute lymphoblastic leukemia , 2013, Nature Genetics.

[43]  I. Sánchez-García,et al.  Function of oncogenes in cancer development: a changing paradigm , 2013, The EMBO journal.

[44]  D. Liang,et al.  Cooperating gene mutations in childhood acute myeloid leukemia with special reference on mutations of ASXL1, TET2, IDH1, IDH2, and DNMT3A. , 2013, Blood.

[45]  R. Houlston,et al.  Developmental timing of mutations revealed by whole-genome sequencing of twins with acute lymphoblastic leukemia , 2013, Proceedings of the National Academy of Sciences.

[46]  A. Kohlmann,et al.  Landmark analysis of DNMT3A mutations in hematological malignancies , 2013, Leukemia.

[47]  Patrick Neven,et al.  Evidence of Gene–Environment Interactions between Common Breast Cancer Susceptibility Loci and Established Environmental Risk Factors , 2013, PLoS genetics.

[48]  Ash A. Alizadeh,et al.  Germinal centre protein HGAL promotes lymphoid hyperplasia and amyloidosis via BCR-mediated Syk activation , 2012, Nature Communications.

[49]  I. Sánchez-García,et al.  The cellular architecture of multiple myeloma , 2012, Cell cycle.

[50]  Diego Alonso-López,et al.  A novel molecular mechanism involved in multiple myeloma development revealed by targeting MafB to haematopoietic progenitors , 2012, The EMBO journal.

[51]  J. Martinez-Climent,et al.  MALT lymphoma meets stem cells , 2012, Cell cycle.

[52]  I. Lossos,et al.  Expression of MALT1 oncogene in hematopoietic stem/progenitor cells recapitulates the pathogenesis of human lymphoma in mice , 2012, Proceedings of the National Academy of Sciences.

[53]  W. Carroll,et al.  Epigenetic reprogramming reverses the relapse-specific gene expression signature and restores chemosensitivity in childhood B-lymphoblastic leukemia. , 2012, Blood.

[54]  C. Shaffer,et al.  Reprogramming of mesenchymal stem cells by the synovial sarcoma-associated oncogene SYT–SSX2 , 2012, Oncogene.

[55]  A. Jankowska,et al.  Mutational spectrum analysis of chronic myelomonocytic leukemia includes genes associated with epigenetic regulation: UTX, EZH2, and DNMT3A. , 2011, Blood.

[56]  O. Abdel-Wahab,et al.  Tet2 loss leads to increased hematopoietic stem cell self-renewal and myeloid transformation. , 2011, Cancer cell.

[57]  L. Bullinger,et al.  DNMT3A mutations in myeloproliferative neoplasms , 2011, Leukemia.

[58]  O. Abdel-Wahab,et al.  DNMT3A mutational analysis in primary myelofibrosis, chronic myelomonocytic leukemia and advanced phases of myeloproliferative neoplasms , 2011, Leukemia.

[59]  Li Ding,et al.  Recurrent DNMT3A Mutations in Patients with Myelodysplastic Syndromes , 2011, Leukemia.

[60]  D. Hanahan,et al.  Hallmarks of Cancer: The Next Generation , 2011, Cell.

[61]  J. Licht,et al.  Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. , 2010, Cancer cell.

[62]  Nicolò Riggi,et al.  EWS-FLI-1 modulates miRNA145 and SOX2 expression to initiate mesenchymal stem cell reprogramming toward Ewing sarcoma cancer stem cells. , 2010, Genes & development.

[63]  Wolfgang Wagner,et al.  Age-dependent DNA methylation of genes that are suppressed in stem cells is a hallmark of cancer. , 2010, Genome research.

[64]  Manuel Serrano,et al.  A p53-mediated DNA damage response limits reprogramming to ensure iPS cell genomic integrity , 2009, Nature.

[65]  M. Blasco,et al.  The Ink4/Arf locus is a barrier for iPS cell reprogramming , 2009, Nature.

[66]  J. Utikal,et al.  Immortalization eliminates a roadblock during cellular reprogramming into iPS cells , 2009, Nature.

[67]  Scott W. Lowe,et al.  Stem cells: The promises and perils of p53 , 2009, Nature.

[68]  G. Wahl,et al.  Linking the p53 tumor suppressor pathway to somatic cell reprogramming , 2009, Nature.

[69]  Dong Wook Han,et al.  Generation of induced pluripotent stem cells using recombinant proteins. , 2009, Cell stem cell.

[70]  Rhodri Ceredig,et al.  Models of haematopoiesis: seeing the wood for the trees , 2009, Nature Reviews Immunology.

[71]  M. Piris,et al.  Cancer induction by restriction of oncogene expression to the stem cell compartment , 2008, The EMBO journal.

[72]  T. Enver,et al.  Initiating and Cancer-Propagating Cells in TEL-AML1-Associated Childhood Leukemia , 2008, Science.

[73]  Junia V. Melo,et al.  Chronic myeloid leukaemia as a model of disease evolution in human cancer , 2007, Nature Reviews Cancer.

[74]  Christopher B. Miller,et al.  Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia , 2007, Nature.

[75]  Zohar Yakhini,et al.  Polycomb-mediated methylation on Lys27 of histone H3 pre-marks genes for de novo methylation in cancer , 2007, Nature Genetics.

[76]  Kelly M. McGarvey,et al.  A stem cell–like chromatin pattern may predispose tumor suppressor genes to DNA hypermethylation and heritable silencing , 2007, Nature Genetics.

[77]  J. Melo,et al.  Primitive, Quiescent and Difficult to Kill: The Role of Non-Proliferating Stem Cells in Chronic Myeloid Leukemia , 2006, Cell cycle.

[78]  L. Chin,et al.  Nuclear cloning of embryonal carcinoma cells. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[79]  Rudolf Jaenisch,et al.  Reprogramming of a melanoma genome by nuclear transplantation. , 2004, Genes & development.

[80]  T. Curran,et al.  Mouse embryos cloned from brain tumors. , 2003, Cancer research.

[81]  P. Brennan,et al.  Gene-environment interaction and aetiology of cancer: what does it mean and how can we measure it? , 2002, Carcinogenesis.

[82]  A. Borkhardt,et al.  Infection Exposure Promotes ETV6-RUNX1 Precursor B-cell Leukemia via Impaired H3K4 Demethylases. , 2017, Cancer research.

[83]  T. Holyoake,et al.  Primitive, quiescent, Philadelphia-positive stem cells from patients with chronic myeloid leukemia are insensitive to STI571 in vitro. , 2002, Blood.