A Generalized Labeled Multi-Bernoulli filter for maneuvering targets

A multiple maneuvering target system can be viewed as a Jump Markov System (JMS) in the sense that the target movement can be modeled using different motion models where the transition between the motion models by a particular target follows a Markov chain probability rule. This paper describes a Generalized Labelled Multi-Bernoulli (GLMB) filter for tracking maneuvering targets whose movement can be modeled via such a JMS. The proposed filter is validated with two linear and nonlinear maneuvering target tracking examples.

[1]  Ba-Ngu Vo,et al.  A Consistent Metric for Performance Evaluation of Multi-Object Filters , 2008, IEEE Transactions on Signal Processing.

[2]  Samuel S. Blackman,et al.  Multiple-Target Tracking with Radar Applications , 1986 .

[3]  X. R. Li,et al.  Chapter 10 Engineer ’ s Guide to Variable-Structure Multiple-Model Estimation for Tracking , 2022 .

[4]  Y. Bar-Shalom Tracking and data association , 1988 .

[5]  Ba-Ngu Vo,et al.  Labeled Random Finite Sets and Multi-Object Conjugate Priors , 2013, IEEE Transactions on Signal Processing.

[6]  Xiaodong Wang,et al.  Joint multiple target tracking and classification in collaborative sensor networks , 2005, IEEE Journal on Selected Areas in Communications.

[7]  Chongzhao Han,et al.  Multiple-Model Cardinality Balanced Multitarget Multi-Bernoulli Filter for Tracking Maneuvering Targets , 2013, J. Appl. Math..

[8]  Ba-Ngu Vo,et al.  The Gaussian Mixture Probability Hypothesis Density Filter , 2006, IEEE Transactions on Signal Processing.

[9]  Krishna R. Pattipati,et al.  Ground target tracking with variable structure IMM estimator , 2000, IEEE Trans. Aerosp. Electron. Syst..

[10]  Ronald P. S. Mahler,et al.  Statistical Multisource-Multitarget Information Fusion , 2007 .

[11]  Branko Ristic,et al.  Beyond the Kalman Filter: Particle Filters for Tracking Applications , 2004 .

[12]  Ba-Ngu Vo,et al.  Labeled Random Finite Sets and the Bayes Multi-Target Tracking Filter , 2013, IEEE Transactions on Signal Processing.

[13]  Ba-Ngu Vo,et al.  Robust Multi-Bernoulli Filtering , 2013, IEEE Journal of Selected Topics in Signal Processing.

[14]  Klaus C. J. Dietmayer,et al.  The multiple model labeled multi-Bernoulli filter , 2015, 2015 18th International Conference on Information Fusion (Fusion).

[15]  Ba-Ngu Vo,et al.  The Cardinality Balanced Multi-Target Multi-Bernoulli Filter and Its Implementations , 2009, IEEE Transactions on Signal Processing.

[16]  Xiaodong Wang,et al.  Joint multiple target tracking and classification in collaborative sensor networks , 2004, ISIT.

[17]  R. Mahler,et al.  PHD filters of higher order in target number , 2006, IEEE Transactions on Aerospace and Electronic Systems.

[18]  Ba-Ngu Vo,et al.  A fast implementation of the generalized labeled multi-Bernoulli filter with joint prediction and update , 2015, 2015 18th International Conference on Information Fusion (Fusion).

[19]  Jeffrey K. Uhlmann,et al.  New extension of the Kalman filter to nonlinear systems , 1997, Defense, Security, and Sensing.

[20]  K. Punithakumar,et al.  Multiple-model probability hypothesis density filter for tracking maneuvering targets , 2004, IEEE Transactions on Aerospace and Electronic Systems.

[21]  Thiagalingam Kirubarajan,et al.  Estimation with Applications to Tracking and Navigation , 2001 .

[22]  Peter Willett,et al.  The Multiple Model CPHD Tracker , 2012, IEEE Transactions on Signal Processing.

[23]  Ba-Ngu Vo,et al.  Analytic Implementations of the Cardinalized Probability Hypothesis Density Filter , 2007, IEEE Transactions on Signal Processing.

[24]  Arnaud Doucet,et al.  Particle filters for state estimation of jump Markov linear systems , 2001, IEEE Trans. Signal Process..

[25]  Thia Kirubarajan,et al.  Multiple Model Multi-Bernoulli Filters for Manoeuvering Targets , 2013, IEEE Transactions on Aerospace and Electronic Systems.

[26]  V. Jilkov,et al.  Survey of maneuvering target tracking. Part V. Multiple-model methods , 2005, IEEE Transactions on Aerospace and Electronic Systems.

[27]  Klaus C. J. Dietmayer,et al.  The Labeled Multi-Bernoulli Filter , 2014, IEEE Transactions on Signal Processing.

[28]  Ba-Ngu Vo,et al.  CPHD Filtering With Unknown Clutter Rate and Detection Profile , 2011, IEEE Transactions on Signal Processing.

[29]  R. Mahler Multitarget Bayes filtering via first-order multitarget moments , 2003 .

[30]  David Suter,et al.  Joint Detection and Estimation of Multiple Objects From Image Observations , 2010, IEEE Transactions on Signal Processing.

[31]  A. Doucet,et al.  Sequential Monte Carlo methods for multitarget filtering with random finite sets , 2005, IEEE Transactions on Aerospace and Electronic Systems.

[32]  Ba-Ngu Vo,et al.  A Generalized Labeled Multi-Bernoulli Filter Implementation using Gibbs Sampling , 2015, ArXiv.

[33]  Syed Ahmed Pasha,et al.  A Gaussian Mixture PHD Filter for Jump Markov System Models , 2009, IEEE Transactions on Aerospace and Electronic Systems.

[34]  Amir Averbuch,et al.  Interacting Multiple Model Methods in Target Tracking: A Survey , 1988 .

[35]  Ronald P. S. Mahler On multitarget jump-Markov filters , 2012, 2012 15th International Conference on Information Fusion.

[36]  Ronald P. S. Mahler,et al.  Advances in Statistical Multisource-Multitarget Information Fusion , 2014 .