Molecular Heterostructures of Covalent Triazine Frameworks for Enhanced Photocatalytic Hydrogen Production

[1]  Reiner Sebastian Sprick,et al.  Sulfone-containing covalent organic frameworks for photocatalytic hydrogen evolution from water , 2018, Nature Chemistry.

[2]  Arne Thomas,et al.  Exploring the “Goldilocks Zone” of Semiconducting Polymer Photocatalysts by Donor-Acceptor Interactions , 2018, Angewandte Chemie.

[3]  Arne Thomas,et al.  Exploring the "Goldilocks Zone" of Semiconducting Polymer Photocatalysts by Donor-Acceptor Interactions. , 2018, Angewandte Chemie.

[4]  Buyin Li,et al.  Crystalline Covalent Triazine Frameworks by In Situ Oxidation of Alcohols to Aldehyde Monomers. , 2018, Angewandte Chemie.

[5]  Buyin Li,et al.  Crystalline Covalent Triazine Frameworks by In Situ Oxidation of Alcohols to Aldehyde Monomers. , 2018, Angewandte Chemie.

[6]  Y. Xiong,et al.  2D Polymers as Emerging Materials for Photocatalytic Overall Water Splitting , 2018, Advanced materials.

[7]  Lei Wang,et al.  Asymmetric Covalent Triazine Framework for Enhanced Visible-Light Photoredox Catalysis via Energy Transfer Cascade. , 2018, Angewandte Chemie.

[8]  Katharina Landfester,et al.  Ein asymmetrisches kovalentes Triazin‐Netzwerk für effiziente Photoredox‐Katalyse durch Energietransfer‐Kaskaden unter sichtbarem Licht , 2018, Angewandte Chemie.

[9]  Fan Yang,et al.  Carbon Quantum Dot Implanted Graphite Carbon Nitride Nanotubes: Excellent Charge Separation and Enhanced Photocatalytic Hydrogen Evolution. , 2018, Angewandte Chemie.

[10]  R. Schomäcker,et al.  Diacetylene Functionalized Covalent Organic Framework (COF) for Photocatalytic Hydrogen Generation. , 2017, Journal of the American Chemical Society.

[11]  A. Cooper,et al.  Covalent Triazine Frameworks via a Low‐Temperature Polycondensation Approach , 2017, Angewandte Chemie.

[12]  Jinghua Wu,et al.  CO2 Reduction: From the Electrochemical to Photochemical Approach , 2017, Advanced science.

[13]  Alexander J. Cowan,et al.  A Solution‐Processable Polymer Photocatalyst for Hydrogen Evolution from Water , 2017 .

[14]  Geoffrey I N Waterhouse,et al.  Defect‐Engineered Ultrathin δ‐MnO2 Nanosheet Arrays as Bifunctional Electrodes for Efficient Overall Water Splitting , 2017 .

[15]  Jinlong Yang,et al.  Conjugated Microporous Polymer Nanosheets for Overall Water Splitting Using Visible Light , 2017, Advanced materials.

[16]  Shaohua Shen,et al.  Molecular Design of Polymer Heterojunctions for Efficient Solar–Hydrogen Conversion , 2017, Advanced materials.

[17]  Tierui Zhang,et al.  Alkali‐Assisted Synthesis of Nitrogen Deficient Graphitic Carbon Nitride with Tunable Band Structures for Efficient Visible‐Light‐Driven Hydrogen Evolution , 2017, Advanced materials.

[18]  Xiaoling Ding,et al.  Enhanced photocatalytic hydrogen evolution along with byproducts suppressing over Z-scheme CdxZn1-xS/Au/g-C3N4 photocatalysts under visible light. , 2017, Science bulletin.

[19]  Xinchen Wang,et al.  Konjugierte Polymere: Katalysatoren für die photokatalytische Wasserstoffentwicklung , 2016 .

[20]  Xinchen Wang,et al.  Conjugated Polymers: Catalysts for Photocatalytic Hydrogen Evolution. , 2016, Angewandte Chemie.

[21]  Chun‐Sing Lee,et al.  On the Study of Exciton Binding Energy with Direct Charge Generation in Photovoltaic Polymers , 2016 .

[22]  N. Zhang,et al.  Rational Design of Porous Conjugated Polymers and Roles of Residual Palladium for Photocatalytic Hydrogen Production. , 2016, Journal of the American Chemical Society.

[23]  X. Chang,et al.  Effective Charge Carrier Utilization in Photocatalytic Conversions. , 2016, Accounts of chemical research.

[24]  C. Tung,et al.  CdS Nanoparticle‐Decorated Cd Nanosheets for Efficient Visible Light‐Driven Photocatalytic Hydrogen Evolution , 2016 .

[25]  Reiner Sebastian Sprick,et al.  Visible‐Light‐Driven Hydrogen Evolution Using Planarized Conjugated Polymer Photocatalysts , 2015, Angewandte Chemie.

[26]  Reiner Sebastian Sprick,et al.  Visible‐Light‐Driven Hydrogen Evolution Using Planarized Conjugated Polymer Photocatalysts , 2015, Angewandte Chemie.

[27]  Ling Wu,et al.  Covalent Triazine-Based Frameworks as Visible Light Photocatalysts for the Splitting of Water. , 2015, Macromolecular rapid communications.

[28]  C. Ochsenfeld,et al.  A tunable azine covalent organic framework platform for visible light-induced hydrogen generation , 2015, Nature Communications.

[29]  Reiner Sebastian Sprick,et al.  Tunable organic photocatalysts for visible-light-driven hydrogen evolution. , 2015, Journal of the American Chemical Society.

[30]  Yong Zhou,et al.  State‐of‐the‐Art Progress in Diverse Heterostructured Photocatalysts toward Promoting Photocatalytic Performance , 2015 .

[31]  R. Marschall,et al.  Semiconductor Composites: Strategies for Enhancing Charge Carrier Separation to Improve Photocatalytic Activity , 2014 .

[32]  A. Majumdar,et al.  Opportunities and challenges for a sustainable energy future , 2012, Nature.

[33]  A. Cooper,et al.  Porous, Fluorescent, Covalent Triazine‐Based Frameworks Via Room‐Temperature and Microwave‐Assisted Synthesis , 2012, Advanced materials.

[34]  M. Antonietti,et al.  Rational Extension of the Family of Layered, Covalent, Triazine‐Based Frameworks with Regular Porosity , 2010, Advanced materials.

[35]  John A. Turner,et al.  Sustainable Hydrogen Production , 2004, Science.

[36]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.

[37]  M. Antonietti,et al.  A metal-free polymeric photocatalyst for hydrogen production from water under visible light. , 2009, Nature materials.