Machine-learning Applications to Membrane Active Peptides

[1]  Gajendra P. S. Raghava,et al.  CPPsite 2.0: a repository of experimentally validated cell-penetrating peptides , 2015, Nucleic Acids Res..

[2]  A. Prochiantz,et al.  The third helix of the Antennapedia homeodomain translocates through biological membranes. , 1994, The Journal of biological chemistry.

[3]  Jing He,et al.  Mechanism Matters: A Taxonomy of Cell Penetrating Peptides. , 2015, Trends in biochemical sciences.

[4]  A. Iwaniak,et al.  Chemometrics and cheminformatics in the analysis of biologically active peptides from food sources , 2015 .

[5]  Gisbert Schneider,et al.  Recurrent Neural Network Model for Constructive Peptide Design , 2018, J. Chem. Inf. Model..

[6]  Esben Jannik Bjerrum,et al.  Improving Chemical Autoencoder Latent Space and Molecular De Novo Generation Diversity with Heteroencoders , 2018, Biomolecules.

[7]  Dominik Heider,et al.  Encodings and models for antimicrobial peptide classification for multi-resistant pathogens , 2019, BioData Mining.

[8]  Wei Yu,et al.  A Survey of Deep Learning: Platforms, Applications and Emerging Research Trends , 2018, IEEE Access.

[9]  Md. Zakir Hossain,et al.  A Comprehensive Survey of Deep Learning for Image Captioning , 2018, ACM Comput. Surv..

[10]  François Laviolette,et al.  Machine Learning Assisted Design of Highly Active Peptides for Drug Discovery , 2015, PLoS Comput. Biol..

[11]  Thomas Blaschke,et al.  Molecular de-novo design through deep reinforcement learning , 2017, Journal of Cheminformatics.

[12]  F. Milletti,et al.  Cell-penetrating peptides: classes, origin, and current landscape. , 2012, Drug discovery today.

[13]  Justin M. Wolfe,et al.  Machine Learning To Predict Cell-Penetrating Peptides for Antisense Delivery , 2018, ACS central science.

[14]  Ulf Norinder,et al.  Structural and conformational determinants of macrocycle cell permeability. , 2016, Nature chemical biology.

[15]  David Baker,et al.  Accurate de novo design of hyperstable constrained peptides , 2016, Nature.

[16]  Elif Ozkirimli,et al.  Membrane Active Peptides and Their Biophysical Characterization , 2018, Biomolecules.

[17]  T. Sejnowski,et al.  Predicting the secondary structure of globular proteins using neural network models. , 1988, Journal of molecular biology.

[18]  N el Tayar,et al.  Solvent-dependent conformation and hydrogen-bonding capacity of cyclosporin A: evidence from partition coefficients and molecular dynamics simulations. , 1993, Journal of medicinal chemistry.

[19]  Jianfeng Pei,et al.  Deep learning for molecular generation. , 2019, Future medicinal chemistry.

[20]  Dong-Sheng Cao,et al.  propy: a tool to generate various modes of Chou's PseAAC , 2013, Bioinform..

[21]  A. Frankel,et al.  Endocytosis and targeting of exogenous HIV‐1 Tat protein. , 1991, The EMBO journal.

[22]  S. Wold,et al.  Principal property values for six non-natural amino acids and their application to a structure–activity relationship for oxytocin peptide analogues , 1987 .

[23]  G. Balogh,et al.  Investigation and Mathematical Description of the Real Driving Force of Passive Transport of Drug Molecules from Supersaturated Solutions. , 2016, Molecular pharmaceutics.

[24]  Jürgen Schmidhuber,et al.  Long Short-Term Memory , 1997, Neural Computation.

[25]  Prabina Kumar Meher,et al.  Predicting antimicrobial peptides with improved accuracy by incorporating the compositional, physico-chemical and structural features into Chou’s general PseAAC , 2017, Scientific Reports.

[26]  A. Ng Feature selection, L1 vs. L2 regularization, and rotational invariance , 2004, Twenty-first international conference on Machine learning - ICML '04.

[27]  D. Vukicevic,et al.  Selection and redesign for high selectivity of membrane-active antimicrobial peptides from a dedicated sequence/function database. , 2019, Biochimica et biophysica acta. Biomembranes.

[28]  Bohyung Han,et al.  Regularizing Deep Neural Networks by Noise: Its Interpretation and Optimization , 2017, NIPS.

[29]  Zhe Wang,et al.  APD: the Antimicrobial Peptide Database , 2004, Nucleic Acids Res..

[30]  Ting Liu,et al.  Recent advances in convolutional neural networks , 2015, Pattern Recognit..

[31]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[32]  Thierry Kogej,et al.  Generating Focused Molecule Libraries for Drug Discovery with Recurrent Neural Networks , 2017, ACS central science.

[33]  Minoru Kanehisa,et al.  AAindex: amino acid index database, progress report 2008 , 2007, Nucleic Acids Res..

[34]  Xia Li,et al.  APD3: the antimicrobial peptide database as a tool for research and education , 2015, Nucleic Acids Res..

[35]  Gisbert Schneider,et al.  Designing Anticancer Peptides by Constructive Machine Learning , 2018, ChemMedChem.

[36]  Amarda Shehu,et al.  Deep learning improves antimicrobial peptide recognition , 2018, Bioinform..

[37]  T. Hoffmann,et al.  Peptide therapeutics: current status and future directions. , 2015, Drug discovery today.

[38]  Thomas Blaschke,et al.  The rise of deep learning in drug discovery. , 2018, Drug discovery today.

[39]  L. Haragsim,et al.  Cyclosporine: A Review , 2012, Journal of transplantation.

[40]  K. Medzihradszky,et al.  A Cell-Penetrating Scorpion Toxin Enables Mode-Specific Modulation of TRPA1 and Pain , 2019, Cell.

[41]  Hans Lennernäs,et al.  Intestinal Permeability and Drug Absorption: Predictive Experimental, Computational and In Vivo Approaches , 2019, Pharmaceutics.

[42]  Zois Boukouvalas,et al.  Deep learning for molecular generation and optimization - a review of the state of the art , 2019, Molecular Systems Design & Engineering.

[43]  S. Wold,et al.  New chemical descriptors relevant for the design of biologically active peptides. A multivariate characterization of 87 amino acids. , 1998, Journal of medicinal chemistry.

[44]  Taghi M. Khoshgoftaar,et al.  A survey on Image Data Augmentation for Deep Learning , 2019, Journal of Big Data.

[45]  Yoshua Bengio,et al.  How transferable are features in deep neural networks? , 2014, NIPS.

[46]  Svante Wold,et al.  Multivariate Parametrization of 55 Coded and Non‐Coded Amino Acids , 1989 .

[47]  F. Lombardo,et al.  Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. , 2001, Advanced drug delivery reviews.

[48]  A. Stocker,et al.  Chemical space guided discovery of antimicrobial bridged bicyclic peptides against Pseudomonas aeruginosa and its biofilms , 2017, Chemical science.

[49]  Nitish Srivastava,et al.  Dropout: a simple way to prevent neural networks from overfitting , 2014, J. Mach. Learn. Res..

[50]  Jolene L. Lau,et al.  Therapeutic peptides: Historical perspectives, current development trends, and future directions. , 2017, Bioorganic & medicinal chemistry.

[51]  Aaron Klein,et al.  Fast Bayesian Optimization of Machine Learning Hyperparameters on Large Datasets , 2016, AISTATS.

[52]  Alán Aspuru-Guzik,et al.  Deep learning enables rapid identification of potent DDR1 kinase inhibitors , 2019, Nature Biotechnology.

[53]  Vasanthanathan Poongavanam,et al.  Impact of Dynamically Exposed Polarity on Permeability and Solubility of Chameleonic Drugs Beyond the Rule of 5. , 2018, Journal of medicinal chemistry.

[54]  Iddo Friedberg,et al.  Identifying antimicrobial peptides using word embedding with deep recurrent neural networks , 2018, bioRxiv.

[55]  Manuela Pavan,et al.  DRAGON SOFTWARE: AN EASY APPROACH TO MOLECULAR DESCRIPTOR CALCULATIONS , 2006 .

[56]  Kumardeep Chaudhary,et al.  In Silico Models for Designing and Discovering Novel Anticancer Peptides , 2013, Scientific Reports.

[57]  Ozlem Keskin,et al.  Interaction prediction and classification of PDZ domains , 2010, BMC Bioinformatics.