Quantum-enhanced greedy combinatorial optimization solver

Combinatorial optimization is a broadly attractive area for potential quantum advantage, but no quantum algorithm has yet made the leap. Noise in quantum hardware remains a challenge, and more sophisticated quantum-classical algorithms are required to bolster their performance. Here, we introduce an iterative quantum heuristic optimization algorithm to solve combinatorial optimization problems. The quantum algorithm reduces to a classical greedy algorithm in the presence of strong noise. We implement the quantum algorithm on a programmable superconducting quantum system using up to 72 qubits for solving paradigmatic Sherrington-Kirkpatrick Ising spin glass problems. We find the quantum algorithm systematically outperforms its classical greedy counterpart, signaling a quantum enhancement. Moreover, we observe an absolute performance comparable with a state-of-the-art semidefinite programming method. Classical simulations of the algorithm illustrate that a key challenge to reaching quantum advantage remains improving the quantum device characteristics.

[1]  Filip B. Maciejewski,et al.  Design and execution of quantum circuits using tens of superconducting qubits and thousands of gates for dense Ising optimization problems , 2023, ArXiv.

[2]  Shaohan Hu,et al.  Evidence of Scaling Advantage for the Quantum Approximate Optimization Algorithm on a Classically Intractable Problem , 2023, ArXiv.

[3]  Stefan H. Sack,et al.  Large-scale quantum approximate optimization on nonplanar graphs with machine learning noise mitigation , 2023, Physical Review Research.

[4]  M. Dupont,et al.  Extending relax-and-round combinatorial optimization solvers with quantum correlations , 2023, Physical Review A.

[5]  B. Bjork,et al.  A Race-Track Trapped-Ion Quantum Processor , 2023, Physical Review X.

[6]  S. Eidenbenz,et al.  Quantum Annealing vs. QAOA: 127 Qubit Higher-Order Ising Problems on NISQ Computers , 2023, Information Security Conference.

[7]  Moinuddin K. Qureshi,et al.  FrozenQubits: Boosting Fidelity of QAOA by Skipping Hotspot Nodes , 2022, ASPLOS.

[8]  J. McClean,et al.  Quantum error mitigation , 2022, Reviews of Modern Physics.

[9]  Arthur G. Rattew,et al.  Constrained optimization via quantum Zeno dynamics , 2022, Communications Physics.

[10]  N. Didier,et al.  Entanglement perspective on the quantum approximate optimization algorithm , 2022, Physical Review A.

[11]  N. Didier,et al.  Calibrating the Classical Hardness of the Quantum Approximate Optimization Algorithm , 2022, PRX Quantum.

[12]  Naeimeh Mohseni,et al.  Ising machines as hardware solvers of combinatorial optimization problems , 2022, Nature Reviews Physics.

[13]  M. Lukin,et al.  Quantum optimization of maximum independent set using Rydberg atom arrays , 2022, Science.

[14]  Stefan Woerner,et al.  Scaling of the quantum approximate optimization algorithm on superconducting qubit based hardware , 2022, Quantum.

[15]  Alaina M. Green,et al.  Multi-round QAOA and advanced mixers on a trapped-ion quantum computer , 2022, Quantum Science and Technology.

[16]  N. S. Blunt,et al.  Multi-qubit entanglement and algorithms on a neutral-atom quantum computer , 2021, Nature.

[17]  George H. Booth,et al.  The Variational Quantum Eigensolver: A review of methods and best practices , 2021, Physics Reports.

[18]  E. Farhi,et al.  The Quantum Approximate Optimization Algorithm at High Depth for MaxCut on Large-Girth Regular Graphs and the Sherrington-Kirkpatrick Model , 2021, TQC.

[19]  Stuart Hadfield,et al.  Bounds on approximating Max kXOR with quantum and classical local algorithms , 2021, Quantum.

[20]  C. Deng,et al.  Quantum Instruction Set Design for Performance. , 2021, Physical review letters.

[21]  P. Love,et al.  MaxCut quantum approximate optimization algorithm performance guarantees for p>1 , 2021 .

[22]  Kunal Marwaha Local classical MAX-CUT algorithm outperforms p=2 QAOA on high-girth regular graphs , 2021, Quantum.

[23]  S. Bravyi,et al.  Obstacles to Variational Quantum Optimization from Symmetry Protection. , 2020, Physical review letters.

[24]  M. Cerezo,et al.  Variational quantum algorithms , 2020, Nature Reviews Physics.

[25]  Blake R. Johnson,et al.  Implementation of XY entangling gates with a single calibrated pulse , 2020, Nature Electronics.

[26]  S. Eidenbenz,et al.  Grover Mixers for QAOA: Shifting Complexity from Mixer Design to State Preparation , 2020, 2020 IEEE International Conference on Quantum Computing and Engineering (QCE).

[27]  Ashley Montanaro,et al.  Quantum speedups of some general-purpose numerical optimisation algorithms , 2020, Quantum Science and Technology.

[28]  D. Bacon,et al.  Quantum approximate optimization of non-planar graph problems on a planar superconducting processor , 2020, Nature Physics.

[29]  Timothy W. Finin,et al.  Quantum-Assisted Greedy Algorithms , 2019, IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium.

[30]  E. Farhi,et al.  The Quantum Approximate Optimization Algorithm and the Sherrington-Kirkpatrick Model at Infinite Size , 2019, Quantum.

[31]  C. Monroe,et al.  Quantum approximate optimization of the long-range Ising model with a trapped-ion quantum simulator , 2019, Proceedings of the National Academy of Sciences.

[32]  Rainer Blatt,et al.  Characterizing large-scale quantum computers via cycle benchmarking , 2019, Nature Communications.

[33]  Afonso S. Bandeira,et al.  Computational Hardness of Certifying Bounds on Constrained PCA Problems , 2019, ITCS.

[34]  Andrea Montanari,et al.  Optimization of the Sherrington-Kirkpatrick Hamiltonian , 2018, 2019 IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS).

[35]  S. Marsh,et al.  A quantum walk-assisted approximate algorithm for bounded NP optimisation problems , 2018, Quantum Inf. Process..

[36]  Blake R. Johnson,et al.  Unsupervised Machine Learning on a Hybrid Quantum Computer , 2017, 1712.05771.

[37]  Rupak Biswas,et al.  From the Quantum Approximate Optimization Algorithm to a Quantum Alternating Operator Ansatz , 2017, Algorithms.

[38]  H. Neven,et al.  Quantum Algorithms for Fixed Qubit Architectures , 2017, 1703.06199.

[39]  A. Harrow,et al.  Quantum Supremacy through the Quantum Approximate Optimization Algorithm , 2016, 1602.07674.

[40]  Andrea Montanari,et al.  Semidefinite programs on sparse random graphs and their application to community detection , 2015, STOC.

[41]  E. Farhi,et al.  A Quantum Approximate Optimization Algorithm Applied to a Bounded Occurrence Constraint Problem , 2014, 1412.6062.

[42]  E. Farhi,et al.  A Quantum Approximate Optimization Algorithm , 2014, 1411.4028.

[43]  S. Knysh,et al.  Quantum Optimization of Fully-Connected Spin Glasses , 2014, 1406.7553.

[44]  Daniel A. Lidar,et al.  Defining and detecting quantum speedup , 2014, Science.

[45]  Daniel A. Lidar,et al.  Evidence for quantum annealing with more than one hundred qubits , 2013, Nature Physics.

[46]  R. B. Blakestad,et al.  Randomized Benchmarking of Quantum Gates , 2007, 0707.0963.

[47]  S. Boettcher Extremal optimization for Sherrington-Kirkpatrick spin glasses , 2004, cond-mat/0407130.

[48]  G. Vidal Efficient simulation of one-dimensional quantum many-body systems. , 2003, Physical review letters.

[49]  E. Farhi,et al.  A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem , 2001, Science.

[50]  Manuel Laguna,et al.  Tabu Search , 1997 .

[51]  Morningstar,et al.  Contractor renormalization group technology and exact Hamiltonian real-space renormalization group transformations. , 1996, Physical review. D, Particles and fields.

[52]  Barenco,et al.  Elementary gates for quantum computation. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[53]  D. Ruelle,et al.  Some rigorous results on the Sherrington-Kirkpatrick spin glass model , 1987 .

[54]  Scott Kirkpatrick,et al.  Optimization by simulated annealing: Quantitative studies , 1984 .

[55]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[56]  F. Barahona On the computational complexity of Ising spin glass models , 1982 .

[57]  Giorgio Parisi,et al.  Infinite Number of Order Parameters for Spin-Glasses , 1979 .

[58]  S. Kirkpatrick,et al.  Solvable Model of a Spin-Glass , 1975 .

[59]  F. Liers,et al.  Enhancing Quantum Algorithms for Maximum Cut via Integer Programming , 2023 .

[60]  V. Bovdi,et al.  Laguna , 2021, Encyclopedic Dictionary of Archaeology.