Robust least squares methods under bounded data uncertainties

We study the problem of estimating an unknown deterministic signal that is observed through an unknown deterministic data matrix under additive noise. In particular, we present a minimax optimization framework to the least squares problems, where the estimator has imperfect data matrix and output vector information. We define the performance of an estimator relative to the performance of the optimal least squares (LS) estimator tuned to the underlying unknown data matrix and output vector, which is defined as the regret of the estimator. We then introduce an efficient robust LS estimation approach that minimizes this regret for the worst possible data matrix and output vector, where we refrain from any structural assumptions on the data. We demonstrate that minimizing this worst-case regret can be cast as a semi-definite programming (SDP) problem. We then consider the regularized and structured LS problems and present novel robust estimation methods by demonstrating that these problems can also be cast as SDP problems. We illustrate the merits of the proposed algorithms with respect to the well-known alternatives in the literature through our simulations. Introducing robust estimation algorithms based on a novel regret formulation.Performance tradeoff between best-case and worst-case optimal estimators owing to the regret formulation.Demonstrating the superior performance of the introduced novel algorithms.

[1]  Bor-Sen Chen,et al.  Robust Minimax MSE Equalizer Designs for MIMO Wireless Communications With Time-Varying Channel Uncertainties , 2010, IEEE Transactions on Signal Processing.

[2]  S. Chandrasekaran,et al.  Parameter estimation in the presence of bounded modeling errors , 1997, IEEE Signal Processing Letters.

[3]  Yonina C. Eldar,et al.  Linear minimax regret estimation of deterministic parameters with bounded data uncertainties , 2004, IEEE Transactions on Signal Processing.

[4]  Yonina C. Eldar,et al.  Rethinking Biased Estimation , 2008 .

[5]  Andrea Goldsmith,et al.  Wireless Communications , 2005, 2021 15th International Conference on Advanced Technologies, Systems and Services in Telecommunications (TELSIKS).

[6]  Gene H. Golub,et al.  Best-fit parameter estimation for a bounded errors-in-variables model , 1997, Proceedings of the 1997 American Control Conference (Cat. No.97CH36041).

[7]  Alexander Graham,et al.  Kronecker Products and Matrix Calculus: With Applications , 1981 .

[8]  Yonina C. Eldar,et al.  A competitive minimax approach to robust estimation of random parameters , 2004, IEEE Transactions on Signal Processing.

[9]  David Gesbert,et al.  From theory to practice: an overview of MIMO space-time coded wireless systems , 2003, IEEE J. Sel. Areas Commun..

[10]  Ercan E. Kuruoglu,et al.  Robust data clustering by learning multi-metric Lq-norm distances , 2012, Expert Syst. Appl..

[11]  Ali H. Sayed,et al.  A Regularized Robust Design Criterion for Uncertain Data , 2001, SIAM J. Matrix Anal. Appl..

[12]  Suleyman Serdar Kozat,et al.  Robust Turbo Equalization Under Channel Uncertainties , 2011, IEEE Transactions on Signal Processing.

[13]  Ming Gu,et al.  An Efficient Algorithm for a Bounded Errors-in-Variables Model , 1999, SIAM J. Matrix Anal. Appl..

[14]  Andrea J. Goldsmith,et al.  Capacity limits of MIMO channels , 2003, IEEE J. Sel. Areas Commun..

[15]  Peter J. W. Rayner,et al.  Impulsive noise elimination using polynomial iteratively reweighted least squares , 1996, 1996 IEEE Digital Signal Processing Workshop Proceedings.

[16]  Shuzhong Zhang,et al.  Complex Matrix Decomposition and Quadratic Programming , 2007, Math. Oper. Res..

[17]  Ercan E. Kuruoglu Nonlinear least lp-norm lters for nonlinear autoregressive-stable processes , 2002 .

[18]  S. Chandrasekaran,et al.  ESTIMATION AND CONTROL WITH BOUNDED DATA UNCERTAINTIES , 1998 .

[19]  Raphael Prevost,et al.  Fast solver for some computational imaging problems: A regularized weighted least-squares approach , 2014, Digit. Signal Process..

[20]  Ali H. Sayed,et al.  A framework for state-space estimation with uncertain models , 2001, IEEE Trans. Autom. Control..

[21]  G. Golub,et al.  Parameter Estimation in the Presence of Bounded Data Uncertainties , 1998, SIAM J. Matrix Anal. Appl..

[22]  Thomas Kailath,et al.  On linear H∞ equalization of communication channels , 2000, IEEE Trans. Signal Process..

[23]  Jian Yang,et al.  On joint transmitter and receiver optimization for multiple-input-multiple-output (MIMO) transmission systems , 1994, IEEE Trans. Commun..

[24]  Mohammad Bilal Malik,et al.  State-space least mean square , 2008, Digit. Signal Process..

[25]  G. Golub,et al.  Worst-case parameter estimation with bounded model uncertainties , 1997, Proceedings of the 1997 American Control Conference (Cat. No.97CH36041).

[26]  Yonina C. Eldar,et al.  Robust mean-squared error estimation in the presence of model uncertainties , 2005, IEEE Transactions on Signal Processing.

[27]  Suleyman Serdar Kozat,et al.  Robust estimation in flat fading channels under bounded channel uncertainties , 2013, Digit. Signal Process..

[28]  Yonina C. Eldar,et al.  Rethinking biased estimation [Lecture Notes] , 2008, IEEE Signal Processing Magazine.

[29]  Ali H. Sayed,et al.  Parameter estimation with multiple sources and levels of uncertainties , 2000, IEEE Trans. Signal Process..

[30]  Petre Stoica,et al.  Generalized linear precoder and decoder design for MIMO channels using the weighted MMSE criterion , 2001, IEEE Trans. Commun..

[31]  Bernard C. Levy,et al.  Robust MSE equalizer design for MIMO communication systems in the presence of model uncertainties , 2006, IEEE Transactions on Signal Processing.

[32]  E. Yaz Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.

[33]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[34]  Helmut Bölcskei,et al.  An overview of MIMO communications - a key to gigabit wireless , 2004, Proceedings of the IEEE.

[35]  Alexander L. Fradkov,et al.  Duality theorems for certain nonconvex extremal problems , 1973 .

[36]  Richard D. Wesel,et al.  Multi-input multi-output fading channel tracking and equalization using Kalman estimation , 2002, IEEE Trans. Signal Process..

[37]  Mert Pilanci,et al.  Structured Least Squares Problems and Robust Estimators , 2010, IEEE Transactions on Signal Processing.

[38]  Raquel Caballero-Águila,et al.  Least-squares linear estimators using measurements transmitted by different sensors with packet dropouts , 2012, Digit. Signal Process..

[39]  Yonina C. Eldar,et al.  Minimax MSE-ratio estimation with signal covariance uncertainties , 2005, IEEE Transactions on Signal Processing.

[40]  Laurent El Ghaoui,et al.  Robust Solutions to Least-Squares Problems with Uncertain Data , 1997, SIAM J. Matrix Anal. Appl..

[41]  Daniel Pérez Palomar,et al.  Rank-Constrained Separable Semidefinite Programming With Applications to Optimal Beamforming , 2010, IEEE Transactions on Signal Processing.

[42]  Anna Scaglione,et al.  Optimal designs for space-time linear precoders and decoders , 2002, IEEE Trans. Signal Process..

[43]  Suleyman Serdar Kozat,et al.  Competitive least squares problem with bounded data uncertainties , 2012, 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[44]  Suleyman Serdar Kozat,et al.  Competitive Linear Estimation Under Model Uncertainties , 2010, IEEE Transactions on Signal Processing.

[45]  Jiashu Zhang,et al.  Pipelined robust M-estimate adaptive second-order Volterra filter against impulsive noise , 2014, Digit. Signal Process..

[46]  Thomas Kailath,et al.  MIMO decision feedback equalization from an H/sup /spl infin// perspective , 2004, IEEE Transactions on Signal Processing.