The Longstaff–Schwartz algorithm for Lévy models: Results on fast and slow convergence

We investigate the Longstaff--Schwartz algorithm for American option pricing assuming that both the number of regressors and the number of Monte Carlo paths tend to infinity. Our main results concern extensions, respectively, applications of results by Glasserman and Yu [Ann. Appl. Probab. 14 (2004) 2090--2119] and Stentoft [Manag. Sci. 50 (2004) 1193--1203] to several L\'{e}vy models, in particular the geometric Meixner model. A convenient setting to analyze this convergence problem is provided by the L\'{e}vy--Sheffer systems introduced by Schoutens and Teugels.

[1]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1967 .

[2]  D. Belomestny,et al.  TRUE UPPER BOUNDS FOR BERMUDAN PRODUCTS VIA NON‐NESTED MONTE CARLO , 2009 .

[3]  J. Teugels,et al.  Lévy processes, polynomials and martingales , 1998 .

[4]  R. Nabben Two-sided bounds on the inverses of diagonally dominant tridiagonal matrices , 1999 .

[5]  B. Grigelionis,et al.  Processes of Meixner type , 1999 .

[6]  D. Brigo,et al.  Interest Rate Models , 2001 .

[7]  M. Kohler,et al.  A dynamic look-ahead Monte Carlo algorithm for pricing Bermudan options , 2007, 0710.3640.

[8]  Pietro Millossovich,et al.  Pricing Life Insurance Contracts with Early Exercise Features , 2009, J. Comput. Appl. Math..

[9]  W. Schoutens Stochastic processes and orthogonal polynomials , 2000 .

[10]  F. Dufresne,et al.  Risk Theory with the Gamma Process , 1991, ASTIN Bulletin.

[11]  Hans U. Gerber,et al.  Option pricing by Esscher transforms. , 1995 .

[12]  Jean-Pierre Fouque,et al.  Asymmetric Variance Reduction for Pricing American Options , 2009 .

[13]  J. Meixner,et al.  Orthogonale Polynomsysteme Mit Einer Besonderen Gestalt Der Erzeugenden Funktion , 1934 .

[14]  Philip Protter,et al.  An analysis of a least squares regression method for American option pricing , 2002, Finance Stochastics.

[15]  Jiang Zeng,et al.  Weighted Derangements and the Linearization Coefficients of Orthogonal Sheffer Polynomials , 1992 .

[16]  P. Glasserman,et al.  Classical solutions to reaction-diffusion systems for hedging problems with interacting Ito and point processes , 2004, math/0505208.

[17]  Lars Stentoft,et al.  Convergence of the Least Squares Monte Carlo Approach to American Option Valuation , 2004, Manag. Sci..

[18]  S. Shreve Stochastic Calculus for Finance II: Continuous-Time Models , 2010 .

[19]  W. Newey,et al.  Convergence rates and asymptotic normality for series estimators , 1997 .

[20]  Daniel Egloff Monte Carlo algorithms for optimal stopping and statistical learning , 2004, math/0408276.

[21]  D. Brigo,et al.  Interest Rate Models - Theory and Practice: With Smile, Inflation and Credit , 2001 .

[22]  Francis A. Longstaff,et al.  Valuing American Options by Simulation: A Simple Least-Squares Approach , 2001 .

[23]  Rama Cont,et al.  OPTION PRICING MODELS WITH JUMPS: INTEGRO-DIFFERENTIAL EQUATIONS AND INVERSE PROBLEMS. , 2004 .

[24]  Vladimir V. Piterbarg Pricing and Hedging Callable Libor Exotics in Forward Libor Models , 2004 .

[25]  S. Shreve Stochastic calculus for finance , 2004 .

[26]  R. Jong A note on "Convergence rates and asymptotic normality for series estimators": uniform convergence rates , 2002 .

[27]  Feller William,et al.  An Introduction To Probability Theory And Its Applications , 1950 .