Following a diabetogenic T cell from genesis through pathogenesis

[1]  D. Mason,et al.  Evidence that the T cell repertoire of normal rats contains cells with the potential to cause diabetes. Characterization of the CD4+ T cell subset that inhibits this autoimmune potential , 1993, The Journal of experimental medicine.

[2]  L. Hood,et al.  Transgenic mice that express a myelin basic protein-specific T cell receptor develop spontaneous autoimmunity , 1993, Cell.

[3]  J. Seidman,et al.  Progression to diabetes in nonobese diabetic (NOD) mice with transgenic T cell receptors. , 1993, Science.

[4]  H. Garchon,et al.  Non-MHC-linked genes in autoimmune diseases. , 1992, Current opinion in immunology.

[5]  K. Lafferty,et al.  CD8 T Cells Are Not Required for Islet Destruction Induced by a CD4+ Islet-Specific T-Cell Clone , 1992, Diabetes.

[6]  G. Schönrich,et al.  Autoimmune diabetes as a consequence of locally produced interleukin-2 , 1992, Nature.

[7]  C. Benoist,et al.  Why is clonal deletion of neonatal thymocytes defective? , 1992, European journal of immunology.

[8]  T. Strom,et al.  An anergic, islet-infiltrating T-cell clone that suppresses murine diabetes secretes a factor that blocks interleukin 2/interleukin 4-dependent proliferation. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[9]  M. Matsumoto,et al.  Analysis of the roles of CD4+ and CD8+ T cells in autoimmune diabetes of NOD mice using transfer to NOD athymic nude mice , 1992, European journal of immunology.

[10]  L. Hood,et al.  Organization, structure, and function of 95 kb of DNA spanning the murine T-cell receptor CαCδ region , 1992 .

[11]  Ji-Woon Yoon,et al.  Studies on Autoimmunity for T-Cell-Mediated β-Cell Destruction: Distinct Difference in β-Cell Destruction Between CD4+ and CD8+ T-Cell Clones Derived From Lymphocytes Infiltrating the Islets of NOD Mice , 1992, Diabetes.

[12]  O. Pankewycz,et al.  A protective NOD islet‐infiltrating CD8+ T cell clone, I.S. 2.15, has in vitro immunosuppressive properties , 1992, European journal of immunology.

[13]  D. Pipeleers Heterogeneity in Pancreatic β-cell Population , 1992, Diabetes.

[14]  L. Wicker,et al.  Autoimmune syndromes in major histocompatibility complex (MHC) congenic strains of nonobese diabetic (NOD) mice. The NOD MHC is dominant for insulitis and cyclophosphamide-induced diabetes , 1992, The Journal of experimental medicine.

[15]  A. Friedman,et al.  Prevention of autoimmune diabetes in the BB rat by intrathymic islet transplantation at birth. , 1992, Science.

[16]  Y. Uematsu,et al.  Exclusion and inclusion of α and β T cell receptor alleles , 1992, Cell.

[17]  G. Schönrich,et al.  Distinct mechanisms of extrathymic T cell tolerance due to differential expression of self antigen. , 1992, International immunology.

[18]  B. Malissen,et al.  Regulation of TCR α and β gene allelic exclusion during T-cell development , 1992 .

[19]  G. Morahan,et al.  Peripheral T cell tolerance. , 1992, Annual review of immunology.

[20]  J. Miyazaki,et al.  Complete prevention of diabetes in transgenic NOD mice expressing I-E molecules. , 1992, Immunology letters.

[21]  A. Necker,et al.  Engineered secreted T-cell receptor alpha beta heterodimers. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[22]  D. Gray,et al.  Mice lacking MHC class II molecules , 1991, Cell.

[23]  W. Ogawa,et al.  Morphological Analysis of Selective Destruction of Pancreatic β-cells by Cytotoxic T Lymphocytes in NOD Mice , 1991, Diabetes.

[24]  C. Benoist,et al.  Islet-specific T-cell clones from nonobese diabetic mice express heterogeneous T-cell receptors. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[25]  P. Anderson,et al.  Biochemical identification of a direct physical interaction between the CD4: p56lck and Ti(TcR)/CD3 complexes , 1991, European journal of immunology.

[26]  P. Bedossa,et al.  Anti‐α/β T cell receptor monoclonal antibody provides an efficient therapy for autoimmune diabetes in nonobese diabetic (NOD) mice , 1991 .

[27]  D. Kioussis,et al.  Characterization of pancreatic islet cell infiltrates in NOD mice: effect of cell transfer and transgene expression , 1991, European journal of immunology.

[28]  H. Kikutani,et al.  T cell receptor V gene usage of islet beta cell-reactive T cells is not restricted in non-obese diabetic mice , 1991, The Journal of experimental medicine.

[29]  H. Pircher,et al.  Ablation of “tolerance” and induction of diabetes by virus infection in viral antigen transgenic mice , 1991, Cell.

[30]  O. Pankewycz,et al.  Islet‐infiltrating T cell clones from non‐obese diabetic mice that promote or prevent accelerated onset diabetes , 1991, European journal of immunology.

[31]  P. Bedossa,et al.  CD8+ T cell homing to the pancreas in the nonobese diabetic mouse is CD4+ T cell-dependent. , 1991, Journal of immunology.

[32]  S. Gordon,et al.  Transfer of diabetes in mice prevented by blockade of adhesion-promoting receptor on macrophages , 1990, Nature.

[33]  K. Haskins,et al.  Acceleration of diabetes in young NOD mice with a CD4+ islet-specific T cell clone. , 1990, Science.

[34]  C. Benoist,et al.  MHC-linked protection from diabetes dissociated from clonal deletion of T cells. , 1990, Science.

[35]  D. Kioussis,et al.  Prevention of insulin-dependent diabetes mellitus in non-obese diabetic mice by transgenes encoding modified I-A β-chain or normal I-E α-chain , 1990, Nature.

[36]  M. Egerton,et al.  Kinetics of mature T-cell development in the thymus. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[37]  H. Boehmer,et al.  Developmental biology of T cells in T cell-receptor transgenic mice. , 1990 .

[38]  G. Eisenbarth,et al.  Type-I diabetes: a chronic autoimmune disease of human, mouse, and rat. , 1990, Annual review of immunology.

[39]  T-cell development in T cell receptor alphabeta transgenic mice. , 1989, Seminars in immunology.

[40]  H. Pircher,et al.  Ontogeny and selection of the T cell repertoire in transgenic mice. , 1989, Seminars in immunology.

[41]  S. Jameson,et al.  Selective development of CD4+ T cells in transgenic mice expressing a class II MHC-restricted antigen receptor , 1989, Nature.

[42]  K. Lafferty,et al.  Pancreatic islet-specific T-cell clones from nonobese diabetic mice. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[43]  C. Janeway,et al.  An explanation for the protective effect of the MHC class II I–E molecule in murine diabetes , 1989, Nature.

[44]  Mark M. Davis,et al.  Antigen/MHC-specific T cells are preferentially exported from the thymus in the presence of their MHC ligand , 1989, Cell.

[45]  A. Hayward,et al.  Neonatal injection of CD3 antibody into nonobese diabetic mice reduces the incidence of insulitis and diabetes. , 1989, Journal of immunology.

[46]  Mark M. Davis,et al.  Phenotypic differences between αβ versus β T-cell receptor transgenic mice undergoing negative selection , 1989, Nature.

[47]  W. Ogawa,et al.  Destruction of pancreatic islet cells by cytotoxic T lymphocytes in nonobese diabetic mice. , 1989, Journal of immunology.

[48]  J. Maltzman,et al.  Positive selection determines T cell receptor V beta 14 gene usage by CD8+ T cells , 1989, The Journal of experimental medicine.

[49]  J. Miyazaki,et al.  Development of autoimmune insulitis is prevented in Eαd but not in Aβk NOD transgenic mice , 1989 .

[50]  J. Bach,et al.  Acceleration of the onset of diabetes in NOD mice by thymectomy at weaning , 1989, European journal of immunology.

[51]  C. Boitard,et al.  T cell-mediated inhibition of the transfer of autoimmune diabetes in NOD mice , 1989, The Journal of experimental medicine.

[52]  J. West,et al.  A monoclonal antibody to murine CD45R distinguishes CD4 T cell populations that produce different cytokines , 1989, European journal of immunology.

[53]  K. Lafferty,et al.  T-Lymphocyte Clone Specific for Pancreatic Islet Antigen , 1988, Diabetes.

[54]  A. Berns,et al.  T-cell-specific deletion of T-cell receptor transgenes allows functional rearrangement of endogenous α- and β-genes , 1988, Nature.

[55]  K. Amano,et al.  Evidence for Initial Involvement of Macrophage in Development of Insulitis in NOD Mice , 1988, Diabetes.

[56]  H. Boehmer,et al.  Tolerance in T-cell-receptor transgenic mice involves deletion of nonmature CD4+8+ thymocytes , 1988, Nature.

[57]  C. Fathman,et al.  Immunotherapy of the nonobese diabetic mouse: treatment with an antibody to T-helper lymphocytes. , 1988, Science.

[58]  S. Ryser,et al.  In transgenic mice the introduced functional T cell receptor β gene prevents expression of endogenous β genes , 1988, Cell.

[59]  J. Bach,et al.  Anti‐suppressor effect of cyclophosphamide on the development of spontaneous diabetes in nod mice , 1988, European journal of immunology.

[60]  L. Wicker,et al.  Both the Lyt-2+ and L3T4+ T cell subsets are required for the transfer of diabetes in nonobese diabetic mice. , 1988, Journal of immunology.

[61]  C. Boitard,et al.  Syngeneic transfer of autoimmune diabetes from diabetic NOD mice to healthy neonates. Requirement for both L3T4+ and Lyt-2+ T cells , 1987, The Journal of experimental medicine.

[62]  K. Takabayashi,et al.  Preventive Effect of Monoclonal Anti-L3T4 Antibody on Development of Diabetes in NOD Mice , 1987, Diabetes.

[63]  K. Yamamura,et al.  Prevention of autoimmune insulitis by expression of I–E molecules in NOD mice , 1987, Nature.

[64]  M. Harada,et al.  Suppression of overt diabetes in NOD mice by anti-thymocyte serum or anti-Thy 1, 2 antibody. , 1986, Jikken dobutsu. Experimental animals.

[65]  Y. Hayashi,et al.  Absence of insulitis and overt diabetes in athymic nude mice with NOD genetic background. , 1986, Jikken dobutsu. Experimental animals.

[66]  M. Dorf,et al.  The NOD mouse: recessive diabetogenic gene in the major histocompatibility complex. , 1986, Science.

[67]  P. Marrack,et al.  The antigen-specific, major histocompatibility complex-restricted receptor on T cells. , 1986, Advances in immunology.

[68]  T. Hanafusa,et al.  Predominance of T lymphocytes in pancreatic islets and spleen of pre-diabetic non-obese diabetic (NOD) mice: a longitudinal study. , 1985, Clinical and experimental immunology.

[69]  Y. Tochino,et al.  The inhibitory effect of neonatal thymectomy on the incidence of insulitis in non-obese diabetes (NOD) mice , 1985 .

[70]  R. Zinkernagel,et al.  Cytotoxic T cell clone‐specific monoclonal antibodies used to select clonotypic antigen‐specific cytotoxic T cells , 1985, European journal of immunology.

[71]  P. Marrack,et al.  The antigen-specific, major histocompatibility complex-restricted receptor on T cells. VI. An antibody to a receptor allotype , 1984, The Journal of experimental medicine.

[72]  E. Shevach,et al.  Identification and initial characterization of a rat monoclonal antibody reactive with the murine interleukin 2 receptor-ligand complex. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[73]  I. Weissman,et al.  Germinal center B cells lack homing receptors necessary for normal lymphocyte recirculation , 1983, The Journal of experimental medicine.

[74]  Y. Tochino,et al.  Breeding of a non-obese, diabetic strain of mice. , 1980, Jikken dobutsu. Experimental animals.

[75]  G. Galfré,et al.  Monoclonal xenogeneic antibodies to murine cell surface antigens: identification of novel leukocyte differentiation antigens , 1978, European journal of immunology.

[76]  P. Lacy,et al.  Method for the Isolation of Intact Islets of Langerhans from the Rat Pancreas , 1967, Diabetes.