Agents, Subsystems, and the Conservation of Information

Dividing the world into subsystems is an important component of the scientific method. The choice of subsystems, however, is not defined a priori. Typically, it is dictated by experimental capabilities, which may be different for different agents. Here, we propose a way to define subsystems in general physical theories, including theories beyond quantum and classical mechanics. Our construction associates every agent A with a subsystem SA, equipped with its set of states and its set of transformations. In quantum theory, this construction accommodates the notion of subsystems as factors of a tensor product, as well as the notion of subsystems associated with a subalgebra of operators. Classical systems can be interpreted as subsystems of quantum systems in different ways, by applying our construction to agents who have access to different sets of operations, including multiphase covariant channels and certain sets of free operations arising in the resource theory of quantum coherence. After illustrating the basic definitions, we restrict our attention to closed systems, that is, systems where all physical transformations act invertibly and where all states can be generated from a fixed initial state. For closed systems, we show that all the states of all subsystems admit a canonical purification. This result extends the purification principle to a broader setting, in which coherent superpositions can be interpreted as purifications of incoherent mixtures.

[1]  Samson Abramsky,et al.  A categorical semantics of quantum protocols , 2004, Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science, 2004..

[2]  Florian Mintert,et al.  A quantitative theory of coherent delocalization , 2013, 1310.6962.

[3]  G. D’Ariano,et al.  Optimal estimation of group transformations using entanglement , 2005, quant-ph/0506267.

[4]  Gilles Brassard,et al.  The equivalence of local-realistic and no-signalling theories , 2017, 1710.01380.

[5]  G. Gour,et al.  Comparison of incoherent operations and measures of coherence , 2016 .

[6]  J. Åberg Quantifying Superposition , 2006, quant-ph/0612146.

[7]  R. Spekkens,et al.  How to quantify coherence: Distinguishing speakable and unspeakable notions , 2016, 1602.08049.

[8]  Lidia del Rio,et al.  Resource theories of knowledge , 2015, 1511.08818.

[9]  F. Buscemi,et al.  Inverting quantum decoherence by classical feedback from the environment. , 2005, Physical review letters.

[10]  B. Coecke Quantum picturalism , 2009, 0908.1787.

[11]  Giulio Chiribella,et al.  Microcanonical thermodynamics in general physical theories , 2016, 1608.04460.

[12]  Giulio Chiribella,et al.  Entanglement as an axiomatic foundation for statistical mechanics , 2016, ArXiv.

[13]  V. Vedral,et al.  Quantum processes which do not use coherence , 2015, 1512.02085.

[14]  Bert Schroer,et al.  THE POSTULATES OF QUANTUM FIELD THEORY , 1962 .

[15]  Markus P. Mueller,et al.  A derivation of quantum theory from physical requirements , 2010, 1004.1483.

[16]  Markus P. Mueller,et al.  Higher-order interference and single-system postulates characterizing quantum theory , 2014, 1403.4147.

[17]  B. Coecke Kindergarten Quantum Mechanics: Lecture Notes , 2006 .

[18]  John H. Selby,et al.  Oracles and Query Lower Bounds in Generalised Probabilistic Theories , 2017, Foundations of Physics.

[19]  Aleks Kissinger,et al.  Picturing Quantum Processes , 2017 .

[20]  Lea Philomena Krämer Gabriel Restricted agents in thermodynamics and quantum information theory , 2016 .

[21]  Lorenza Viola,et al.  A Generalization of Entanglement to Convex Operational Theories: Entanglement Relative to a Subspace of Observables , 2005 .

[22]  Lorenza Viola,et al.  A subsystem-independent generalization of entanglement. , 2004, Physical review letters.

[23]  Giulio Chiribella,et al.  Quantum theory from quantum information: The purification route , 2013 .

[24]  Lluis Masanes,et al.  Impossibility of mixed-state purification in any alternative to the Born Rule , 2018 .

[25]  Raymond Lal,et al.  Causal Categories: Relativistically Interacting Processes , 2011, 1107.6019.

[26]  P. Zanardi,et al.  Virtual quantum subsystems. , 2001, Physical review letters.

[27]  Valerio Scarani,et al.  THE DEVICE-INDEPENDENT OUTLOOK ON QUANTUM PHYSICS , 2013 .

[28]  E. Knill,et al.  Generalizations of entanglement based on coherent states and convex sets , 2002, quant-ph/0207149.

[29]  Stefano Gogioso,et al.  Categorical Probabilistic Theories , 2017, QPL.

[30]  L. Hardy Quantum Theory From Five Reasonable Axioms , 2001, quant-ph/0101012.

[31]  G. D’Ariano,et al.  Optimal nonuniversally covariant cloning , 2001, quant-ph/0101100.

[32]  Giacomo Mauro D'Ariano How to Derive the Hilbert‐Space Formulation of Quantum Mechanics From Purely Operational Axioms , 2006 .

[33]  Mikhail N. Vyalyi,et al.  Classical and Quantum Computation , 2002, Graduate studies in mathematics.

[34]  Harvey S. Leff,et al.  The Black Hole War: My Battle with Stephen Hawking to Make the World Safe for Quantum Mechanics , 2010 .

[35]  J. von Neumann,et al.  On rings of operators. II , 1937 .

[36]  P. Zanardi,et al.  Noiseless Quantum Codes , 1997, quant-ph/9705044.

[37]  Sean Tull,et al.  Two Roads to Classicality , 2017, QPL.

[38]  A. Winter,et al.  Operational Resource Theory of Coherence. , 2015, Physical review letters.

[39]  Giulio Chiribella,et al.  Quantum from principles , 2015, ArXiv.

[40]  Giulio Chiribella,et al.  Quantum Theory from First Principles - An Informational Approach , 2017 .

[41]  S. Popescu,et al.  Quantum nonlocality as an axiom , 1994 .

[42]  David P. DiVincenzo,et al.  Quantum information and computation , 2000, Nature.

[43]  J. Yngvason,et al.  Localization and Entanglement in Relativistic Quantum Physics , 2014, 1401.2652.

[44]  Joe Harris,et al.  Representation Theory: A First Course , 1991 .

[45]  R. Haag,et al.  An Algebraic Approach to Quantum Field Theory , 1964 .

[46]  G. Chiribella Group theoretic structures in the estimation of an unknown unitary transformation , 2011 .

[47]  David Pérez-García,et al.  Existence of an information unit as a postulate of quantum theory , 2012, Proceedings of the National Academy of Sciences.

[48]  Giulio Chiribella,et al.  Dilation of states and processes in operational-probabilistic theories , 2014, QPL.

[49]  Howard Barnum,et al.  Information Processing in Convex Operational Theories , 2009, QPL/DCM@ICALP.

[50]  Giulio Chiribella,et al.  Conservation of information and the foundations of quantum mechanics , 2015 .

[51]  John H. Selby,et al.  Generalised phase kick-back: the structure of computational algorithms from physical principles , 2015, 1510.04699.

[52]  L. Hardy Foliable Operational Structures for General Probabilistic Theories , 2009, 0912.4740.

[53]  S. Lloyd,et al.  Quantum tensor product structures are observable induced. , 2003, Physical Review Letters.

[54]  A. Holevo Statistical structure of quantum theory , 2001 .

[55]  M. Takesaki,et al.  Analyticity and the Unruh effect: a study of local modular flow , 2024, Journal of High Energy Physics.

[56]  N. Gisin,et al.  From Bell's theorem to secure quantum key distribution. , 2005, Physical review letters.

[57]  R. Jozsa Fidelity for Mixed Quantum States , 1994 .

[58]  G. Lindblad A General No-Cloning Theorem , 1999 .

[59]  L. Hardy Reformulating and Reconstructing Quantum Theory , 2011, 1104.2066.

[60]  Č. Brukner,et al.  Quantum Theory and Beyond: Is Entanglement Special? , 2009, 0911.0695.

[61]  G. M. D'Ariano,et al.  Extremal quantum cloning machines , 2005, quant-ph/0507130.

[62]  Lucien Hardy,et al.  A formalism-local framework for general probabilistic theories, including quantum theory , 2010, Mathematical Structures in Computer Science.

[63]  M. Plenio,et al.  Quantifying coherence. , 2013, Physical review letters.

[64]  Giulio Chiribella,et al.  Quantum Erasure of Decoherence , 2007, Open Syst. Inf. Dyn..

[65]  Giulio Chiribella,et al.  Distinguishability and Copiability of Programs in General Process Theories , 2014, Int. J. Softw. Informatics.

[66]  Lorenza Viola,et al.  Constructing Qubits in Physical Systems , 2001 .

[67]  Bob Coecke Terminality Implies No-signalling ...and Much More Than That , 2016, New Generation Computing.

[68]  Daniel A. Lidar,et al.  Decoherence-Free Subspaces for Quantum Computation , 1998, quant-ph/9807004.

[69]  Peter Selinger,et al.  Idempotents in Dagger Categories: (Extended Abstract) , 2008, QPL.

[70]  Hans Halvorson,et al.  Deep beauty : understanding the quantum world through mathematical innovation , 2011 .

[71]  Lea Krämer,et al.  Operational locality in global theories , 2017, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[72]  G. D’Ariano,et al.  Informational derivation of quantum theory , 2010, 1011.6451.

[73]  A. Uhlmann The "transition probability" in the state space of a ∗-algebra , 1976 .

[74]  Jonathan Barrett Information processing in generalized probabilistic theories , 2005 .

[75]  Robert W. Spekkens,et al.  A Generalization of Schur–Weyl Duality with Applications in Quantum Estimation , 2014 .

[76]  Rudolf Haag,et al.  Local quantum physics : fields, particles, algebras , 1993 .

[77]  John H. Selby,et al.  Deriving Grover's lower bound from simple physical principles , 2016, 1604.03118.

[78]  H. Barnum,et al.  Generalized no-broadcasting theorem. , 2007, Physical review letters.

[79]  G. D’Ariano,et al.  Probabilistic theories with purification , 2009, 0908.1583.

[80]  Albert Einstein,et al.  Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .

[81]  Giulio Chiribella,et al.  Quantum Theory, Namely the Pure and Reversible Theory of Information , 2012, Entropy.

[82]  O. Bratteli Operator Algebras And Quantum Statistical Mechanics , 1979 .

[83]  Alexander Wilce,et al.  Conjugates, Filters and Quantum Mechanics , 2012, Quantum.

[84]  Lucien Hardy,et al.  Reconstructing Quantum Theory , 2013, 1303.1538.

[85]  Viola,et al.  Theory of quantum error correction for general noise , 2000, Physical review letters.

[86]  E. Schrödinger Discussion of Probability Relations between Separated Systems , 1935, Mathematical Proceedings of the Cambridge Philosophical Society.

[87]  Artur Ekert,et al.  Quantum computers and dissipation , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[88]  Eric Chitambar,et al.  Critical Examination of Incoherent Operations and a Physically Consistent Resource Theory of Quantum Coherence. , 2016, Physical review letters.

[89]  Samson Abramsky,et al.  Categorical quantum mechanics , 2008, 0808.1023.

[90]  Paolo Zanardi Stabilizing quantum information , 2000 .

[91]  Giulio Chiribella,et al.  Entanglement and thermodynamics in general probabilistic theories , 2015, 1504.07045.

[92]  K. B. Whaley,et al.  Theory of decoherence-free fault-tolerant universal quantum computation , 2000, quant-ph/0004064.

[93]  P. Selinger A Survey of Graphical Languages for Monoidal Categories , 2009, 0908.3347.