Scalability of Sub-100 nm InAs HEMTs on InP Substrate for Future Logic Applications

We have experimentally studied the scaling behavior of sub-100-nm InAs high-electron mobility transistors (HEMTs) on InP substrate from the logic operation point of view. These devices have been designed for scalability and combine a thin InAlAs barrier and a thin channel containing a pure InAs subchannel. InAs HEMTs with gate length down to 40 nm exhibit excellent logic figures of merit, such as I<sub>ON</sub>/I<sub>OFF</sub> = 9 × 10<sup>4</sup>, drain-induced-barrier lowering = 80 mV/V, S = 70 mV/dec, and an estimated logic gate delay of 0.6 ps at V<sub>DS</sub> = 0.5 V. In addition, we have obtained excellent high-frequency operation with L<sub>g</sub> = 40 nm, such as f<sub>T</sub> = 491 GHz and f<sub>max</sub> = 402 GHz at V<sub>DS</sub> = 0.5 V. In spite of the narrow bandgap of InAs subchannel, under the studied conditions, our devices are shown not to suffer from excessive band-to-band tunneling. When benchmarked against state-of-the-art Si devices, 40-nm InAs HEMTs exhibit I<sub>ON</sub> = 0.6 A/μm at I<sub>Leak</sub> = 200 nA/μm. This is about two times higher I<sub>ON</sub> than state-of-the-art high-performance 65-nm nMOSFET with comparable physical gate length and I<sub>Leak</sub>.

[1]  G. Dewey,et al.  High-performance 40nm gate length InSb p-channel compressively strained quantum well field effect transistors for low-power (VCC=0.5V) logic applications , 2008, 2008 IEEE International Electron Devices Meeting.

[2]  C.C. Eugster,et al.  An InAlAs/InAs MODFET , 1991, [Proceedings 1991] Third International Conference Indium Phosphide and Related Materials.

[3]  Kwang-Seok Seo,et al.  Beyond-CMOS: Impact of Side-Recess Spacing on the Logic Performance of 50 ㎚ In 0.7 Ga 0.3 As HEMTs , 2006 .

[4]  Kwang-Seok Seo,et al.  Performance Evaluation of 50 nm In0.7Ga0.3As HEMTs For Beyond-CMOS Logic Applications , 2005 .

[5]  Y. Nishi,et al.  High-mobility ultrathin strained Ge MOSFETs on bulk and SOI with low band-to-band tunneling leakage: experiments , 2006, IEEE Transactions on Electron Devices.

[6]  Dae-Hyun Kim,et al.  A Self-Aligned InGaAs HEMT Architecture for Logic Applications , 2009, IEEE Transactions on Electron Devices.

[7]  R. Chau III-V on Silicon for Future High Speed and Ultra-Low Power Digital Applications: Challenges and Opportunities , 2008 .

[8]  Tetsuya Suemitsu,et al.  High-performance 0.1-/spl mu/m gate enhancement-mode InAlAs/InGaAs HEMT's using two-step recessed gate technology , 1999 .

[9]  Tae-Woo Kim,et al.  Fabrication of InAs composite channel high electron mobility transistors by utilizing Ne-based atomic layer etching , 2007 .

[10]  Kwang-Seok Seo,et al.  Performance evaluation of 50 nm In/sub 0.7/Ga/sub 0.3/As HEMTs for beyond-CMOS logic applications , 2005, IEEE InternationalElectron Devices Meeting, 2005. IEDM Technical Digest..

[11]  T. D. Lin,et al.  Approaching fermi level unpinning in Oxide-In0.2Ga0.8As , 2008, 2008 IEEE International Electron Devices Meeting.

[12]  J. D. del Alamo,et al.  Breakdown voltage enhancement from channel quantization in InAl/As/n/sup +/-InGaAs HFET's , 1992, IEEE Electron Device Letters.

[13]  Donghyun Kim,et al.  High-mobility low band-to-band-tunneling strained-Germanium double-gate heterostructure FETs: Simulations , 2006, IEEE Transactions on Electron Devices.

[14]  S. Tyagi,et al.  High performance 35nm L/sub GATE/ CMOS transistors featuring NiSi metal gate (FUSI), uniaxial strained silicon channels and 1.2nm gate oxide , 2005, IEEE InternationalElectron Devices Meeting, 2005. IEDM Technical Digest..

[15]  Technology development & design for 22 nm InGaAs/InP-channel MOSFETs , 2008, 2008 20th International Conference on Indium Phosphide and Related Materials.

[16]  L. Selmi,et al.  Physically based modeling of low field electron mobility in ultrathin single- and double-gate SOI n-MOSFETs , 2003 .

[17]  S. Koveshnikov,et al.  Addressing the gate stack challenge for high mobility InxGa1-xAs channels for NFETs , 2008, 2008 IEEE International Electron Devices Meeting.

[18]  Jesús A. del Alamo,et al.  Beyond CMOS: Logic Suitability of In0.7Ga0.3As HEMT , 2006 .

[19]  A. Khakifirooz,et al.  MOSFET performance scaling: Limitations and future options , 2008, 2008 IEEE International Electron Devices Meeting.

[20]  D. Antoniadis,et al.  Extraction of virtual-source injection velocity in sub-100 nm III–V HFETs , 2009, 2009 IEEE International Electron Devices Meeting (IEDM).

[21]  S. Chou,et al.  Relationship between measured and intrinsic transconductances of FET's , 1987, IEEE Transactions on Electron Devices.

[22]  J.A. del Alamo,et al.  Lateral and Vertical Scaling of $\hbox{In}_{0.7} \hbox{Ga}_{0.3}\hbox{As}$ HEMTs for Post-Si-CMOS Logic Applications , 2008, IEEE Transactions on Electron Devices.

[23]  T. Numata,et al.  Experimental evidences of quantum-mechanical effects on low-field mobility, gate-channel capacitance, and threshold voltage of ultrathin body SOI MOSFETs , 2001, International Electron Devices Meeting. Technical Digest (Cat. No.01CH37224).

[24]  S. Natarajan,et al.  A 65nm ultra low power logic platform technology using uni-axial strained silicon transistors , 2005, IEEE InternationalElectron Devices Meeting, 2005. IEDM Technical Digest..

[25]  R. Chau,et al.  Benchmarking nanotechnology for high-performance and low-power logic transistor applications , 2004, IEEE Transactions on Nanotechnology.

[26]  T. Shen,et al.  High-performance surface channel In-rich In0.75Ga0.25As MOSFETs with ALD high-k as gate dielectric , 2008, 2008 IEEE International Electron Devices Meeting.

[27]  D. Greenberg,et al.  Nonlinear source and drain resistance in recessed-gate heterostructure field-effect transistors , 1996 .

[28]  J.A. del Alamo,et al.  Logic Performance of 40 nm InAs HEMTs , 2007, 2007 IEEE International Electron Devices Meeting.

[29]  Mario G. Ancona,et al.  Antimonide-based compound semiconductors for electronic devices: A review , 2005 .

[30]  R. Chau,et al.  85nm gate length enhancement and depletion mode InSb quantum well transistors for ultra high speed and very low power digital logic applications , 2005, IEEE InternationalElectron Devices Meeting, 2005. IEDM Technical Digest..