Efficient LEO Dynamic Orbit Determination with Triple Differenced GPS Carrier Phases

The dynamic precise orbit determination of a Low Earth Orbit satellite using triple differenced GPS phases is presented in this study. The atmospheric drag parameters are estimated to compensate the incomplete atmosphere model for better precision of the orbit solution. In addition, the empirical force parameters, especially once- and twice-per-revolution components, along with the new IERS Conventions and models to compute the perturbing forces are introduced to absorb the remaining unmodelled forces. The optimal arc length for the parameterization and the data processing strategy are also tested and analyzed for the best orbit solutions. The triple differencing technique enables fast and efficient orbit estimation, because no ambiguity resolution and cycle slip detection are required. With the triple differenced ion-free GPS phase observables, the orbit and the velocity solutions for 24 hours of CHAMP are calculated; they compare with the published Rapid Science Orbit with the accuracy of 8 cm and 0·12 mm/s in 3D RMS for the orbit and the velocity, respectively, and are statistically consistent with the RSO when it is not better than 4 cm in terms of an absolute accuracy. The approach presented here provides an efficient and simple, but robust, alternative approach, while the solution's accuracy is still comparable to the double-difference results.

[1]  M. Rothacher,et al.  Kinematic and reduced-dynamic precise orbit determination of low earth orbiters , 2003 .

[2]  Heike Bock,et al.  Efficient methods for determining precise orbits of low Earth orbiters using the Global Positioning System , 2003 .

[3]  Dorota A. Grejner-Brzezinska,et al.  A Triple Difference Approach to Low Earth Orbiter Precision Orbit Determination , 2003, Journal of Navigation.

[4]  Y. Bar-Sever,et al.  Precise Orbit Determination for CHAMP using GPS Data from BlackJack Receiver , 2001 .

[5]  Rolf König,et al.  CHAMP rapid orbit determination for GPS atmospheric limb sounding , 2002 .

[6]  A. Hedin Extension of the MSIS Thermosphere Model into the middle and lower atmosphere , 1991 .

[7]  Dorota A. Grejner-Brzezinska Analysis of GPS Data Processing Techniques: In Search of Optimized Strategy of Orbit and Earth Rotation Parameter Recovery / , 1995 .

[8]  Bob E. Schutz,et al.  Precision orbit determination for TOPEX/POSEIDON , 1994 .

[9]  Benjamin W. Remondi,et al.  Triple Differencing with Kalman Filtering: Making It Work , 2000, GPS Solutions.

[10]  Bob E. Schutz,et al.  Improving satellite orbit solution using double-differenced GPS carrier phase in kinematic mode , 2001 .

[11]  S. H. Byun,et al.  Satellite orbit determination using triple-differenced GPS carrier phase in pure kinematic mode , 2003 .

[12]  Tae-Suk Bae LEO Dynamic Orbit Enhancement Using Atmospheric and Empirical Force Modeling , 2005 .

[13]  Jennifer S. Haase,et al.  Sensitivity of zenith total delay accuracy to GPS orbit errors and implications for near‐real‐time GPS meteorology , 2002 .