Editable polycube map for GPU-based subdivision surfaces

In this paper we propose an editable polycube mapping method that, given an arbitrary high-resolution polygonal mesh and a simple polycube representation plus optional sketched features indicating relevant correspondences between the two, provides a uniform, regular and artist-controllable quads-only mesh with a parameterized subdivision scheme. The method introduces a global parameterization, based on a divide and conquer strategy, which allows to create polycube-maps with a much smaller number of patches, and gives much more control over the quality of the induced subdivision surface. All this makes it practical for real-time rendering on modern hardware (e.g. OGL 4.1 and D3D11 tessellation hardware). By sketching these correspondence features, processing large-scale models with complex geometry and topology is now feasible. This is crucial for obtaining watertight displaced Catmull-Clark subdivision surfaces and high-quality texturing on real-time applications.

[1]  Hong Qin,et al.  User-controllable polycube map for manifold spline construction , 2008, SPM '08.

[2]  Alla Sheffer,et al.  Cross-parameterization and compatible remeshing of 3D models , 2004, ACM Trans. Graph..

[3]  Charles T. Loop,et al.  Approximating Catmull-Clark subdivision surfaces with bicubic patches , 2008, TOGS.

[4]  David Bommes,et al.  Mixed-integer quadrangulation , 2009, SIGGRAPH '09.

[5]  Chi-Wing Fu,et al.  A divide-and-conquer approach for automatic polycube map construction , 2009, Comput. Graph..

[6]  Scott Schaefer,et al.  Approximating subdivision surfaces with Gregory patches for hardware tessellation , 2009, SIGGRAPH 2009.

[7]  Sandrine Lanquetin,et al.  Reverse Catmull-Clark Subdivision , 2006 .

[8]  Andrei Khodakovsky,et al.  Globally smooth parameterizations with low distortion , 2003, ACM Trans. Graph..

[9]  Valerio Pascucci,et al.  Spectral surface quadrangulation , 2006, SIGGRAPH 2006.

[10]  Tony DeRose,et al.  Multiresolution analysis of arbitrary meshes , 1995, SIGGRAPH.

[11]  Konrad Polthier,et al.  QuadCover ‐ Surface Parameterization using Branched Coverings , 2007, Comput. Graph. Forum.

[12]  Bruno Lévy,et al.  Geometry-aware direction field processing , 2009, TOGS.

[13]  D. Bommes,et al.  Mixed-integer quadrangulation , 2009, SIGGRAPH 2009.

[14]  Masahiro Fujita,et al.  Multiresolution interpolation meshes , 2001, Proceedings Ninth Pacific Conference on Computer Graphics and Applications. Pacific Graphics 2001.

[15]  Gershon Elber,et al.  Multiresolution Analysis , 2022 .

[16]  David P. Dobkin,et al.  Multiresolution mesh morphing , 1999, SIGGRAPH.

[17]  Peter Schröder,et al.  Consistent mesh parameterizations , 2001, SIGGRAPH.

[18]  Charlie C. L. Wang,et al.  Automatic PolyCube-Maps , 2008, GMP.

[19]  Dinesh Manocha,et al.  Appearance-preserving simplification , 1998, SIGGRAPH.

[20]  Peter Schröder,et al.  Fitting subdivision surfaces , 2001, Proceedings Visualization, 2001. VIS '01..

[21]  Vladislav Kraevoy,et al.  Cross-parameterization and compatible remeshing of 3D models , 2004, SIGGRAPH 2004.

[22]  Charles T. Loop,et al.  Approximating subdivision surfaces with Gregory patches for hardware tessellation , 2009, ACM Trans. Graph..

[23]  Hong Qin,et al.  Polycube splines , 2007, Comput. Aided Des..

[24]  D. A. Field Laplacian smoothing and Delaunay triangulations , 1988 .

[25]  Olga Sorkine-Hornung,et al.  Template-Based 3D Model Fitting Using Dual-Domain Relaxation , 2011, IEEE Transactions on Visualization and Computer Graphics.

[26]  Pierre Alliez,et al.  Designing quadrangulations with discrete harmonic forms , 2006, SGP '06.

[27]  Reinhard Klein,et al.  An Adaptable Surface Parameterization Method , 2003, IMR.

[28]  Paolo Cignoni,et al.  PolyCube-Maps , 2004, SIGGRAPH 2004.

[29]  Valerio Pascucci,et al.  Spectral surface quadrangulation , 2006, SIGGRAPH '06.

[30]  Hujun Bao,et al.  Spectral quadrangulation with orientation and alignment control , 2008, SIGGRAPH Asia '08.