Recent developments in elliptic partial differential equations of Monge-Ampere type

In conjunction with applications to optimal transportation and conformal geometry, there has been considerable research activity in recent years devoted to fully nonlinear, elliptic second order partial differential equations of a particular form, given by functions of the Hessian plus a lower order matrix function. Regularity is determined through the behaviour of this function with respect to the gradient variables. We present a selection of second derivative estimates and indicate briefly their application to optimal transportation and conformal deformation of Riemannian manifolds. Mathematics Subject Classification (2000). Primary 35J60, 35J65; Secondary 53A30.

[1]  Philippe Delanoë Classical solvability in dimension two of the second boundary-value problem associated with the Monge-Ampère operator , 1991 .

[2]  Luis A. Caffarelli,et al.  The Dirichlet problem for nonlinear second-order elliptic equations I , 1984 .

[3]  J. Urbas,et al.  NONLINEAR ELLIPTIC AND PARABOLIC EQUATIONS OF THE SECOND ORDER , 1989 .

[4]  C. Villani Topics in Optimal Transportation , 2003 .

[5]  Guofang Wang Mathematik in den Naturwissenschaften Leipzig A fully nonlinear conformal flow on locally conformally flat manifolds by Pengfei Guan and , 2003 .

[6]  J. Spruck,et al.  Boundary value problems for surfaces of constant Gauss Curvature , 1992 .

[7]  The Yamabe problem for higher order curvatures , 2005, math/0505463.

[8]  N. Trudinger,et al.  Boundary regularity for the Monge-Ampere and affine maximal surface equations , 2005, math/0509342.

[9]  Local estimates for some fully nonlinear elliptic equations , 2005, math/0510652.

[10]  J. Spruck,et al.  The Dirichlet problem for nonlinear second order elliptic equations, III: Functions of the eigenvalues of the Hessian , 1985 .

[11]  Pengfei Guan,et al.  On a Monge-Ampère equation arising in geometric optics , 1998 .

[12]  W. Gangbo,et al.  The geometry of optimal transportation , 1996 .

[13]  N. Trudinger,et al.  Regularity of Potential Functions of the Optimal Transportation Problem , 2005 .

[14]  Xu-jia Wang On the design of a reflector antenna , 1996 .

[15]  Xu-jia Wang On the design of a reflector antenna II , 2004 .

[16]  Joel Spruck,et al.  Boundary-value problems on $\mathbb{S}^n$ for surfaces of constant Gauss curvature , 1993 .

[17]  J. Urbas On the second boundary value problem for equations of Monge-Ampère type. , 1997 .

[18]  L. Caffarelli The regularity of mappings with a convex potential , 1992 .

[19]  S. Rachev,et al.  Mass transportation problems , 1998 .

[20]  Paul Yang,et al.  An a priori estimate for a fully nonlinear equation on four-manifolds , 2002 .

[21]  On Harnack inequalities and singularities of admissible metrics in the Yamabe problem , 2005, math/0509341.

[22]  Neil S. Trudinger,et al.  On the Dirichlet problem for Hessian equations , 1995 .

[23]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[24]  Jeff A. Viaclovsky,et al.  Prescribing symmetric functions of the eigenvalues of the Ricci tensor , 2004, math/0409187.

[25]  L. Caffarelli Boundary regularity of maps with convex potentials – II , 1996 .

[26]  N. Trudinger,et al.  On the second boundary value problem for Monge-Ampère type equations and optimal transportation , 2006, math/0601086.

[27]  Neil S. Trudinger,et al.  Remarks concerning the conformal deformation of riemannian structures on compact manifolds , 1968 .

[28]  Gary M. Lieberman,et al.  Nonlinear oblique boundary value problems for nonlinear elliptic equations , 1986 .

[29]  Continuity of maps solutions of optimal transportation problems , 2005 .

[30]  R. Schoen Conformal deformation of a Riemannian metric to constant scalar curvature , 1984 .

[31]  Thierry Aubin Monge-Ampère Equations , 1982 .

[32]  Matthew J. Gursky,et al.  An equation of Monge-Ampère type in conformal geometry, and four-manifolds of positive Ricci curvature , 2002 .

[33]  Yanyan Li,et al.  On some conformally invariant fully nonlinear equations , 2003, math/0304393.

[34]  YanYan Li,et al.  On some conformally invariant fully nonlinear equations, II. Liouville, Harnack and Yamabe , 2004, math/0403442.

[35]  On a fully nonlinear Yamabe problem , 2005, math/0505257.

[36]  Guofang Wang,et al.  Local estimates for a class of fully nonlinear equations arising from conformal geometry , 2003 .