Phase transitions in a complex network

We study a mean field model of a complex network, focusing on edge and triangle densities. Our first result is the derivation of a variational characterization of the entropy density, compatible with the infinite node limit. We then determine the optimizing graphs for small triangle density and a range of edge density, though we can only prove they are local, not global, maxima of the entropy density. With this assumption we then prove that the resulting entropy density must lose its analyticity in various regimes. In particular this implies the existence of a phase transition between distinct heterogeneous multipartite phases at low triangle density, and a phase transition between these phases and the disordered phase at high triangle density.

[1]  David Ruelle,et al.  Thermodynamic Formalism: The Mathematical Structures of Classical Equilibrium Statistical Mechanics , 1978 .

[2]  Oleg Pikhurko,et al.  Minimum Number of k-Cliques in Graphs with Bounded Independence Number , 2012, Combinatorics, Probability and Computing.

[3]  László Lovász,et al.  Finitely forcible graphons , 2009, J. Comb. Theory, Ser. B.

[4]  László Lovász,et al.  Limits of dense graph sequences , 2004, J. Comb. Theory B.

[5]  S. Brush,et al.  Statistical Physics and the Atomic Theory of Matter, from Boyle and Newton to Landau and Onsager , 1986 .

[6]  H. Georgii The equivalence of ensembles for classical systems of particles , 1995 .

[7]  David Strauss On a general class of models for interaction , 1986 .

[8]  Sourav Chatterjee,et al.  The large deviation principle for the Erdős-Rényi random graph , 2011, Eur. J. Comb..

[9]  V. Sós,et al.  Convergent Sequences of Dense Graphs I: Subgraph Frequencies, Metric Properties and Testing , 2007, math/0702004.

[10]  D. Ruelle Statistical Mechanics: Rigorous Results , 1999 .

[11]  E. M.,et al.  Statistical Mechanics , 2021, Manual for Theoretical Chemistry.

[12]  Charles Radin,et al.  Emergent Structures in Large Networks , 2013, J. Appl. Probab..

[13]  Hugo Touchette,et al.  An introduction to the thermodynamic and macrostate levels of nonequivalent ensembles , 2004 .

[14]  Mei Yin,et al.  Phase transitions in exponential random graphs , 2011, 1108.0649.

[15]  S. Adzhiev,et al.  Entropy in the sense of Boltzmann and Poincaré , 2014, Contemporary Mathematics. Fundamental Directions.

[16]  Charles Radin,et al.  Singularities in the Entropy of Asymptotically Large Simple Graphs , 2013, 1302.3531.

[17]  D. Aristoff,et al.  Rigidity in Solids , 2011, 1105.4500.

[18]  Liquid–Vapor Phase Transitions for Systems with Finite-Range Interactions , 1998, cond-mat/9809145.

[19]  T. C. Dorlas Statistical Mechanics: Fundamentals and Model Solutions, , 1999 .

[20]  B. Szegedy,et al.  Szemerédi’s Lemma for the Analyst , 2007 .

[21]  R. Tyrrell Rockafellar,et al.  Convex Analysis , 1970, Princeton Landmarks in Mathematics and Physics.

[22]  László Lovász,et al.  Large Networks and Graph Limits , 2012, Colloquium Publications.

[23]  R. Israel Convexity in the Theory of Lattice Gases , 1979 .

[24]  F. Theil A Proof of Crystallization in Two Dimensions , 2006 .

[25]  C. Borgs,et al.  Moments of Two-Variable Functions and the Uniqueness of Graph Limits , 2008, 0803.1244.

[26]  Juyong Park,et al.  Solution for the properties of a clustered network. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[27]  D. Whiffen Thermodynamics , 1973, Nature.

[28]  Mark Newman,et al.  Networks: An Introduction , 2010 .

[29]  P. Diaconis,et al.  Estimating and understanding exponential random graph models , 2011, 1102.2650.