Uniqueness of non-linear ground states for fractional Laplacians in $${\mathbb{R}}$$R

AbstractWe prove uniqueness of ground state solutions Q = Q(|x|) ≥ 0 of the non-linear equation $$(-\Delta)^s Q+Q-Q^{\alpha+1}= 0 \quad {\rm in} \, \mathbb{R},$$(−Δ)sQ+Q−Qα+1=0inR,where 0 < s < 1 and 0 < α < 4s/(1−2s) for $${s<\frac{1}{2}}$$s<12 and 0 < α < ∞ for $${s\geq \frac{1}{2}}$$s≥12. Here (−Δ)s denotes the fractional Laplacian in one dimension. In particular, we answer affirmatively an open question recently raised by Kenig–Martel–Robbiano and we generalize (by completely different techniques) the specific uniqueness result obtained by Amick and Toland for $${s=\frac{1}{2}}$$s=12 and α = 1 in [5] for the Benjamin–Ono equation.As a technical key result in this paper, we show that the associated linearized operator L+ = (−Δ)s+1−(α+1)Qα is non-degenerate; i.e., its kernel satisfies ker L+ = span{Q′}. This result about L+ proves a spectral assumption, which plays a central role for the stability of solitary waves and blowup analysis for non-linear dispersive PDEs with fractional Laplacians, such as the generalized Benjamin–Ono (BO) and Benjamin–Bona–Mahony (BBM) water wave equations.

[1]  L. Silvestre,et al.  Uniqueness of Radial Solutions for the Fractional Laplacian , 2013, 1302.2652.

[2]  M. Weinstein Existence and dynamic stability of solitary wave solutions of equations arising in long wave propagation , 1987 .

[3]  Shu-Ming Chang,et al.  Spectra of Linearized Operators for NLS Solitary Waves , 2006, SIAM J. Math. Anal..

[4]  Barry Simon,et al.  Analysis of Operators , 1978 .

[5]  Ryuji Maehara,et al.  The Jordan Curve Theorem Via the Brouwer Fixed Point Theorem , 1984 .

[6]  Michael I. Weinstein,et al.  Modulational Stability of Ground States of Nonlinear Schrödinger Equations , 1985 .

[7]  Yanyan Li Remark on some conformally invariant integral equations: the method of moving spheres , 2003 .

[8]  M. González Gamma convergence of an energy functional related to the fractional Laplacian , 2008, 0805.3869.

[9]  Zhiwu Lin Instability of nonlinear dispersive solitary waves , 2008, 0802.0012.

[10]  J. Bona,et al.  Model equations for waves in stratified fluids , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[11]  R. Carmona,et al.  Relativistic Schrödinger operators: Asymptotic behavior of the eigenfunctions , 1990 .

[12]  Rodrigo Bañuelos,et al.  The Cauchy process and the Steklov problem , 2004 .

[13]  J. Bona,et al.  Analyticity of solitary-wave solutions of model equations for long waves , 1996 .

[14]  J. Bona,et al.  Nonlocal models for nonlinear, dispersive waves , 1990 .

[15]  Enno Lenzmann,et al.  Blowup for nonlinear wave equations describing boson stars , 2007 .

[16]  Wenxiong Chen,et al.  Classification of solutions for an integral equation , 2006 .

[17]  R. Getoor,et al.  Some theorems on stable processes , 1960 .

[18]  S. Chang,et al.  Fractional Laplacian in conformal geometry , 2010, 1003.0398.

[19]  James Serrin,et al.  Uniqueness of positive radial solutions of Δu+f(u)=0 in ℝn , 1987 .

[20]  Kevin McLeod,et al.  Uniqueness of Positive Radial Solutions of Δu + f(u) = 0 in ℝ n , II , 1993 .

[21]  Scattering matrix in conformal geometry , 2001, math/0109089.

[22]  J. Toland,et al.  Uniqueness and related analytic properties for the Benjamin-Ono equation —a nonlinear Neumann problem in the plane , 1991 .

[23]  M. Kwong Uniqueness of positive solutions of Δu−u+up=0 in Rn , 1989 .

[24]  J. Bona,et al.  Total Positivity and the Stability of Internal Waves in Stratified Fluids of Finite Depth , 1991 .

[25]  Lin Zhao,et al.  Classification of Positive Solitary Solutions of the Nonlinear Choquard Equation , 2010 .

[26]  R. Seiringer,et al.  Non-linear ground state representations and sharp Hardy inequalities , 2008, 0803.0503.

[27]  E. Lieb,et al.  The Chandrasekhar theory of stellar collapse as the limit of quantum mechanics , 1987 .

[28]  Mark S. C. Reed,et al.  Method of Modern Mathematical Physics , 1972 .

[29]  Luc Robbiano,et al.  A P ] 1 J un 2 01 0 Local well-posedness and blow up in the energy space for a class of L 2 critical dispersion generalized , 2010 .

[30]  L. Caffarelli,et al.  An Extension Problem Related to the Fractional Laplacian , 2006, math/0608640.

[31]  R. W. Brown,et al.  The stability of internal solitary waves , 1983, Mathematical Proceedings of the Cambridge Philosophical Society.

[32]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[33]  Andrew J. Majda,et al.  A one-dimensional model for dispersive wave turbulence , 1997 .

[34]  Alexander Elgart,et al.  Mean Field Dynamics of Boson Stars , 2005 .