Adaptive Numerical Methods for Elastohydrodynamic Lubrication

Numerical solutions to elastohydrodynamic lubrication problems have been computed for the last half century. Over the past decade multilevel techniques have been successfully applied in several solvers and significant speed-ups achieved. The aim of numerical research in this field is to develop techniques in order to calculate accurate solutions to demanding industrial problems as efficiently as possible. In this work the numerical solver, previously developed by Nurgat, is examined. Despite being successful in achieving converged results on a single grid, there were some unresolved issues relating to the multigrid performance. These problems are explained and the necessary modifications to the method used are detailed. There is much current interest in obtaining results to transient elastohydrodynamic lubrication problems. These are examined in detail and the justification for the methods used are discussed. Example results for industrially relevant cases, such as variation of lubricant entrainment, oscillation of the applied load and the presence of surface defects are considered. In many other fields, adaptation in both space and time is used to increase performance and accuracy. However, these techniques are not currently used for elastohydrodynamic lubrication problems. It is shown that they can be successfully applied and substantial benefits accrued. A method of variable timestepping has been introduced and results are presented showing that not only is it as accurate as fixed time stepping methods, but that the computational work required to obtain these solutions is significantly reduced. Local error control on each individual timestep is also implemented. Adaptation of the spatial mesh is also developed. By developing a hierarchy of refined meshes within the multigrid structure it is seen how significantly fewer computational points are used in the most expensive numerical calculations. This, in turn, means that the computational time required is reduced. Different criteria for adaptation are explained and results presented showing the relative levels of accuracy and speed-up achieved.

[1]  Hideaki Okamura,et al.  Paper XI(iii) – A contribution to the numerical analysis of isothermal elastohydrodynamic lubrication , 1993 .

[2]  Achi Brandt,et al.  Multilevel Evaluation of Integral Transforms on Adaptive Grids , 1998 .

[3]  C. J. Hooke,et al.  The behaviour of heavily loaded line contacts with transverse roughness , 1999 .

[4]  Ken Brodlie,et al.  Navigating high-dimensional spaces to support design steering , 2000, Proceedings Visualization 2000. VIS 2000 (Cat. No.00CH37145).

[5]  H. S. Nagaraj,et al.  Infrared Temperature Mapping in Elastohydrodynamic Lubrication , 1976 .

[6]  James Clerk Maxwell On the Dynamical Theory of Gases , 2003 .

[7]  Leon M Keer,et al.  Fast Methods for Solving Rough Contact Problems: A Comparative Study , 2000 .

[8]  M. Baines Moving finite elements , 1994 .

[9]  D. Dowson,et al.  Elasto-hydrodynamic lubrication : the fundamentals of roller and gear lubrication , 1966 .

[10]  Scott R. Fulton A COMPARISON OF MULTILEVEL ADAPTIVE METHODS FOR HURRICANE TRACK PREDICTION , 1997 .

[11]  Roel Verstappen A simple numerical algorithm for elastohydrodynamic lubrication, based on a dynamic variation principle , 1991 .

[12]  R. Bosma,et al.  The Influence of Longitudinal and Transverse Roughness on the Elastohydrodynamic Lubrication of Circular Contacts , 1988 .

[13]  A. A. Lubrecht,et al.  Elastohydrodynamic lubrication of rough surfaces , 1999 .

[14]  R. Gohar,et al.  Theoretical and experimental studies of the oil film in lubricated point contact , 1966, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[15]  H. Moes,et al.  Optimum similarity analysis with applications to elastohydrodynamic lubrication , 1992 .

[16]  T. F. Conry,et al.  An efficient, robust, multi-level computational algorithm for elastohydrodynamic lubrication , 1989 .

[17]  J. L. Tevaarwerk,et al.  Shear behaviour of elastohydrodynamic oil films , 1977, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[18]  Achi Brandt,et al.  Multilevel Evaluation of Integral Transforms with Asymptotically Smooth Kernels , 1998, SIAM J. Sci. Comput..

[19]  Thomas L. Beck Multiscale techniques for electrostatics and eigenvalue problems in real space , 1999 .

[20]  K. P. Oh,et al.  A unified treatment of thick and thin film elastohydrodynamic problems by using higher order element methods , 1975, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[21]  J. Durany,et al.  Numerical computation of free boundary problems in elastohydrodynamic lubrication , 1996 .

[22]  K. Johnson,et al.  The Rheological Properties of Elastohydrodynamic Lubricants , 1986 .

[23]  K. P. Oh The Numerical Solution of Dynamically Loaded Elastohydrodynamic Contact as a Nonlinear Complementarity Problem , 1984 .

[24]  W. 0. Winer,et al.  Correlational Aspects of the Viscosity-Temperature-Pressure Relationship of Lubricating Oils(Dr In dissertation at Technical University of Delft, 1966) , 1966 .

[25]  D. Dowson,et al.  Past, present and future studies in elastohydrodynamics , 1999 .

[26]  R. Bosma,et al.  Multigrid, an Alternative Method of Solution for Two-Dimensional Elastohydrodynamically Lubricated Point Contact Calculations , 1987 .

[27]  C. Hooke,et al.  The behaviour of low-amplitude surface roughness under line contacts , 1999 .

[28]  J P R B Walton,et al.  Hyperscribe: a Data Management Facility for the Dataaow Visualization Pipeline , 1996 .

[29]  Motohiro Kaneta,et al.  Optical Interferometric Observations of the Effects of a Bump on Point Contact EHL , 1992 .

[30]  D. Dowson,et al.  Isothermal Elastohydrodynamic Lubrication of Point Contacts: Part III—Fully Flooded Results , 1976 .

[31]  Duncan Dowson,et al.  Analysis of isothermal elastohydrodynamic point contacts lubricated by Newtonian fluids using multigrid methods , 1997 .

[32]  Martin Berzins,et al.  SCIRun: Application to Atmospheric Dispersion Problems Using Unstructured Meshes , 2001 .

[33]  Xiaolan Ai,et al.  A Transient Model for Micro-Elastohydrodynamic Lubrication With Three-Dimensional Irregularities , 1993 .

[34]  R. Bosma,et al.  Multigrid, An Alternative Method for Calculating Film Thickness and Pressure Profiles in Elastohydrodynamically Lubricated Line Contacts , 1986 .

[35]  D. Dowson,et al.  Isothermal Elastohydrodynamic Lubrication of Point Contacts: Part IV—Starvation Results , 1976 .

[36]  Ernst Hairer,et al.  Solving Ordinary Differential Equations I: Nonstiff Problems , 2009 .

[37]  L. Wahlbin Superconvergence in Galerkin Finite Element Methods , 1995 .

[38]  Barna L. Bihari,et al.  Multiresolution Schemes for the Numerical Solution of 2-D Conservation Laws I , 1997, SIAM J. Sci. Comput..

[39]  T. F. Conry,et al.  Effects of Lubricant Rheology and Kinematic Conditions on Micro-Elastohydrodynamic Lubrication , 1989 .

[40]  L. Shampine,et al.  Computer solution of ordinary differential equations : the initial value problem , 1975 .

[41]  D. Zhu,et al.  Effect of Surface Roughness on the Point Contact EHL , 1988 .

[42]  O. Zienkiewicz,et al.  Finite elements and approximation , 1983 .

[43]  L. E. Scales,et al.  Current tools and techniques for EHL modelling , 1996 .

[44]  Motohiro Kaneta,et al.  Effects of elastic moduli of contact surfaces in elastohydrodynamic lubrication , 1992 .

[45]  F. Sadeghi,et al.  Compressible Elastohydrodynamic Lubrication of Rough Surfaces , 1989 .

[46]  R. Bosma,et al.  Advanced Multilevel Solution of the EHL Line Contact Problem , 1990 .

[47]  A. Lubrecht,et al.  Numerical Analysis of the Influence of Waviness on the Film Thickness of a Circular EHL Contact , 1996 .

[48]  Hugh Spikes,et al.  An Experimental Study of Film Thickness between Rough Surfaces in EHD Contacts , 2000 .

[49]  Martin Berzins,et al.  Temporal Error Control for Convection-Dominated Equations in Two Space Dimensions , 1995, SIAM J. Sci. Comput..

[50]  Duncan Dowson,et al.  Elastohydrodynamic and micro-elastohydrodynamic lubrication , 1995 .

[51]  Charles D. Hansen,et al.  Interactive Simulation and Visualization , 1999, Computer.

[52]  D. Dowson,et al.  Isothermal Elastohydrodynamic Lubrication of Point Contacts: Part II—Ellipticity Parameter Results , 1976 .

[53]  A. A. Lubrecht,et al.  Transient elastohydrodynamic analysis of an overhead cam/tappet contact , 2000 .

[54]  J. Oldroyd On the formulation of rheological equations of state , 1950, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[55]  C. Hooke,et al.  The behaviour of low-amplitude surface roughness under line contacts: Non-Newtonian fluids , 2000 .

[56]  Xiaolan Ai,et al.  The influence of moving dent on point EHL contacts , 1994 .

[57]  J. A. Greenwood,et al.  Inlet Shear Heating in Elastohydrodynamic Lubrication , 1973 .

[58]  F Lemaitre,et al.  Non-Newtonian cavitation analysis in journal bearings , 1995 .

[59]  A Review of A Posteriori Error Estimation , 1996 .

[60]  Ja Greenwood Non-newtonian lubrication , 2001 .

[61]  A. Lubrecht,et al.  Numerical Simulation of a Transverse Ridge in a Circular EHL Contact Under Rolling/Sliding , 1994 .

[62]  A. Cameron,et al.  The solution of the point contact elasto-hydrodynamic problem , 1975, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[63]  A. Brandt,et al.  Multilevel matrix multiplication and fast solution of integral equations , 1990 .

[64]  L. E. Scales Quantifying the rheological basis of traction fluid performance , 1999 .

[65]  Martin Berzins,et al.  Multigrid Methods for EHL Problems , 1996 .

[66]  L. E. Scales,et al.  Simulation and Observation of Transient Effects in Elastohydrodynamic Lubrication , 1996 .

[67]  H. P. Evans,et al.  Inverse Solution of Reynolds’ Equation of Lubrication Under Point-Contact Elastohydrodynamic Conditions , 1981 .

[68]  C. W. Gear,et al.  Simultaneous Numerical Solution of Differential-Algebraic Equations , 1971 .

[69]  Hugh Spikes,et al.  Lubricant Film Thickness in Rough Surface, Mixed Elastohydrodynamic Contact , 2000 .

[70]  John Z. Lou,et al.  A Parallel Incompressible Flow Solver Package with a Parallel Multigrid Elliptic Kernel , 1996 .

[71]  C. Venner Multilevel solution of the EHL line and point contact problems , 1991 .

[72]  John Z. Lou,et al.  A parallel incompressible flow solver package with a parallel multigrid elliptic kernel , 1995 .

[73]  M. Kostreva Elasto-hydrodynamic lubrication: A non-linear complementarity problem , 1984 .

[74]  J. A. Greenwood,et al.  Transverse roughness in elastohydrodynamic lubrication , 1999 .

[75]  Bo Jacobson,et al.  Thin Film Lubrication of Real Surfaces , 2000 .

[76]  L. Shampine,et al.  Numerical Solution of Ordinary Differential Equations. , 1995 .

[77]  Martin Berzins,et al.  A 3D UNSTRUCTURED MESH ADAPTATION ALGORITHM FOR TIME-DEPENDENT SHOCK-DOMINATED PROBLEMS , 1997 .

[78]  Martin Berzins,et al.  Developing software for time-dependent problems using the method of lines and differential-algebraic integrators , 1989 .

[79]  L. Petzold Differential/Algebraic Equations are not ODE's , 1982 .

[80]  T. E. Tallian,et al.  Ball bearing lubrication: The elastohydrodynamics of elliptical contacts , 1982 .

[81]  S. Bair,et al.  A Rheological Model for Elastohydrodynamic Contacts Based on Primary Laboratory Data , 1979 .

[82]  J. H. Tripp,et al.  Amplitude reduction of waviness in elastohydrodynamic lubrication using an Eyring fluid model , 2000 .

[83]  B. Hamrock Ball bearing lubrication , 1981 .

[84]  J. Oden,et al.  Finite Element Methods for Flow Problems , 2003 .

[85]  O. Reynolds I. On the theory of lubrication and its application to Mr. Beauchamp tower’s experiments, including an experimental determination of the viscosity of olive oil , 1886, Proceedings of the Royal Society of London.

[86]  K. Walters,et al.  On viscoelastic effects in journal-bearing lubrication , 1992 .

[87]  M. Kaneta,et al.  Effects of Surface Roughness on Point Contact EHL , 1993 .

[88]  Martin Berzins,et al.  Solving EHL Problems Using Iterative, Multigrid, and Homotopy Methods , 1999 .

[89]  K. P. Oh,et al.  Numerical solution of the point contact problem using the finite element method , 1977 .

[90]  Wolfgang Hackbusch,et al.  Multi-grid methods and applications , 1985, Springer series in computational mathematics.

[91]  D. Piotrowski,et al.  [Introduction to rheology]. , 1982, Acta haematologica Polonica.

[92]  李幼升,et al.  Ph , 1989 .

[93]  and D Dowson,et al.  Cavitation in Bearings , 1979 .

[94]  R. Gohar,et al.  Elastohydrodynamic lubrication of line contacts , 1991 .

[95]  Carl Barus,et al.  Isothermals, isopiestics and isometrics relative to viscosity , 1893, American Journal of Science.

[96]  G. B. The Dynamical Theory of Gases , 1916, Nature.

[97]  C. J. Hooke,et al.  The Minimum Film Thickness in Line Contacts During Reversal of Entrainment , 1993 .

[98]  R. Bosma,et al.  Film Thickness Calculations in Elastohydrodynamically Lubricated Circular Contacts, Using a Multigrid Method , 1987 .

[99]  A. Hindmarsh LSODE and LSODI, two new initial value ordinary differential equation solvers , 1980, SGNM.

[100]  Claes Johnson Numerical solution of partial differential equations by the finite element method , 1988 .

[101]  C. Venner,et al.  Surface roughness attenuation in line and point contacts , 2000 .

[102]  B. J. Hamrock,et al.  Fast Approach for Calculating Film Thicknesses and Pressures in Elastohydrodynamically Lubricated Contacts at High Loads , 1986 .

[103]  William L. Briggs,et al.  A multigrid tutorial, Second Edition , 2000 .

[104]  D. Brandt,et al.  Multi-level adaptive solutions to boundary-value problems math comptr , 1977 .

[105]  Duncan Dowson,et al.  On lubricant transport conditions in elastohydrodynamic conjuctions , 1998, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[106]  Long Chen INTRODUCTION TO MULTIGRID METHODS , 2005 .

[107]  Rong-Tsong Lee,et al.  Pressure Spikes in Elastohydrodynamically Lubricated Conjunctions , 1988 .

[108]  Ysbrand Hans Wijnant,et al.  Contact dynamics in the field of elastohydrodynamic Lubrication , 1998 .

[109]  Duncan Dowson,et al.  A theoretical analysis of the isothermal elastohydrodynamic lubrication of concentrated contacts. I. Direction of lubricant entrainment coincident with the major axis of the Hertzian contact ellipse , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[110]  C. Taylor,et al.  A Numerical Solution of the Elastohydrodynamic Lubrication Problem Using Finite Elements , 1972 .

[111]  A. B. Metzner,et al.  Development of constitutive equations for polymeric melts and solutions , 1963 .

[112]  Rong-Tsong Lee,et al.  A Circular Non-Newtonian Fluid Model: Part I—Used in Elastohydrodynamic Lubrication , 1990 .

[113]  D. Dowson,et al.  Isothermal Elastohydrodynamic Lubrication of Point Contacts: Part 1—Theoretical Formulation , 1975 .

[114]  Ke Chen,et al.  A new wavelet transform preconditioner for iterative solution of elastohydrodynamic lubrication problems , 2000, Int. J. Comput. Math..

[115]  L. Shampine Implementation of Implicit Formulas for the Solution of ODEs , 1980 .

[116]  Ivo Babuska,et al.  The p and h-p Versions of the Finite Element Method, Basic Principles and Properties , 1994, SIAM Rev..

[117]  Martin Berzins,et al.  An In-depth Investigation of the Multigrid Approach to Steady and Transient EHL Problems , 2000 .

[118]  J. A. Greenwood,et al.  Waviness Amplitude Reduction in EHL Line Contacts Under Rolling-Sliding , 1998 .

[119]  F. W. Smith Lubricant behaviour in concentrated contact systems — the castor oil-steel system , 1959 .

[120]  A. Berker,et al.  Non-Newtonian cavitation analysis in journal bearings , 1995 .

[121]  S. R. Wu A penalty formulation and numerical approximation of the Reynolds-Hertz problem of elastohydrodynamic lubrication , 1986 .

[122]  Martin Berzins,et al.  Adaptive techniques for elastohydrodynamic lubrication solvers , 2001 .

[123]  Timothy Nigel Phillips,et al.  On the influence of lubricant properties on the dynamics of two-dimensional journal bearings , 2000 .

[124]  M. N. Webster,et al.  A Study of Elastohydrodynamic Lubrication of Rough Surfaces , 1991 .

[125]  Farshid Sadeghi,et al.  Non-Newtonian Elastohydrodynamic Lubrication of Point Contact , 1991 .

[126]  A. Jackson,et al.  On the Pressure Rippling and Roughness Deformation in Elastohydrodynamic Lubrication of Rough Surfaces , 1993 .

[127]  Timothy Nigel Phillips,et al.  On the effects of a piezoviscous lubricant on the dynamics of a journal bearing , 1996 .

[128]  A. Lubrecht,et al.  Transient Analysis of Surface Features in an EHL Line Contact in the Case of Sliding , 1994 .

[129]  C HindmarshAlan LSODE and LSODI, two new initial value ordinary differential equation solvers , 1980 .

[130]  C. H. Venner,et al.  Amplitude reduction of small-amplitude waviness in transient elastohydrodynamically lubricated line contacts , 1999 .

[131]  W. E. ten Napel,et al.  Numerical simulation of the overrolling of a surface feature in an EHL line contact , 1991 .

[132]  Hugh Spikes,et al.  The influence of cam-follower motion on elastohydrodynamic film thickness , 2001 .