A subspace estimator for fixed rank perturbations of large random matrices

This paper deals with the problem of parameter estimation based on certain eigenspaces of the empirical covariance matrix of an observed multidimensional time series, in the case where the time series dimension and the observation window grow to infinity at the same pace. In the area of large random matrix theory, recent contributions studied the behavior of the extreme eigenvalues of a random matrix and their associated eigenspaces when this matrix is subject to a fixed-rank perturbation. The present work is concerned with the situation where the parameters to be estimated determine the eigenspace structure of a certain fixed-rank perturbation of the empirical covariance matrix. An estimation algorithm in the spirit of the well-known MUSIC algorithm for parameter estimation is developed. It relies on an approach recently developed by Benaych-Georges and Nadakuditi (2011) [8,9], relating the eigenspaces of extreme eigenvalues of the empirical covariance matrix with eigenspaces of the perturbation matrix. First and second order analyses of the new algorithm are performed.

[1]  C. Donati-Martin,et al.  The largest eigenvalues of finite rank deformation of large Wigner matrices: Convergence and nonuniversality of the fluctuations. , 2007, 0706.0136.

[2]  Philippe Loubaton,et al.  Asymptotic analysis of blind cyclic correlation based symbol rate estimation , 2000, 2000 10th European Signal Processing Conference.

[3]  Z. Bai METHODOLOGIES IN SPECTRAL ANALYSIS OF LARGE DIMENSIONAL RANDOM MATRICES , A REVIEW , 1999 .

[4]  S. Péché The largest eigenvalue of small rank perturbations of Hermitian random matrices , 2004, math/0411487.

[5]  Petre Stoica,et al.  MUSIC, maximum likelihood, and Cramer-Rao bound , 1989, IEEE Transactions on Acoustics, Speech, and Signal Processing.

[6]  Leonid Pastur,et al.  On the law of addition of random matrices: Covariance and the central limit theorem for traces of resolvent , 2007 .

[7]  E. J. Hannan,et al.  Non-linear time series regression , 1971, Journal of Applied Probability.

[8]  Barry G. Quinn,et al.  The Estimation of Frequency , 2012 .

[9]  F. Hiai,et al.  The semicircle law, free random variables, and entropy , 2006 .

[10]  Boaz Nadler,et al.  On the distribution of the ratio of the largest eigenvalue to the trace of a Wishart matrix , 2011, J. Multivar. Anal..

[11]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[12]  L. Pastur,et al.  Eigenvalue Distribution of Large Random Matrices , 2011 .

[13]  I. Johnstone On the distribution of the largest eigenvalue in principal components analysis , 2001 .

[14]  S. Péché,et al.  Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices , 2004, math/0403022.

[15]  Z. Bai,et al.  CLT for linear spectral statistics of large dimensional sample covariance matrices with dependent data , 2017, Statistical Papers.

[16]  A. Guionnet,et al.  Fluctuations of the Extreme Eigenvalues of Finite Rank Deformations of Random Matrices , 2010, 1009.0145.

[17]  Georges Bienvenu,et al.  Adaptivity to background noise spatial coherence for high resolution passive methods , 1980, ICASSP.

[18]  Pascal Bianchi,et al.  Performance of Statistical Tests for Single-Source Detection Using Random Matrix Theory , 2009, IEEE Transactions on Information Theory.

[19]  Z. Bai,et al.  Central limit theorems for eigenvalues in a spiked population model , 2008, 0806.2503.

[20]  D. Paul ASYMPTOTICS OF SAMPLE EIGENSTRUCTURE FOR A LARGE DIMENSIONAL SPIKED COVARIANCE MODEL , 2007 .

[21]  Raj Rao Nadakuditi,et al.  The eigenvalues and eigenvectors of finite, low rank perturbations of large random matrices , 2009, 0910.2120.

[22]  S. Geman A Limit Theorem for the Norm of Random Matrices , 1980 .

[23]  R. O. Schmidt,et al.  Multiple emitter location and signal Parameter estimation , 1986 .

[24]  C. Donati-Martin,et al.  Central limit theorems for eigenvalues of deformations of Wigner matrices , 2009, 0903.4740.

[25]  J. W. Silverstein,et al.  Eigenvalues of large sample covariance matrices of spiked population models , 2004, math/0408165.

[26]  Raj Rao Nadakuditi,et al.  The singular values and vectors of low rank perturbations of large rectangular random matrices , 2011, J. Multivar. Anal..