Analyzing lightning characteristics in central and southern South America

[1]  Bruno L. Medina,et al.  Multiple Strokes Along the Same Channel to Ground in Positive Lightning Produced by a Supercell , 2021, Geophysical Research Letters.

[2]  M. Stock,et al.  Thunder Hours: How Old Methods Offer New Insights into Thunderstorm Climatology , 2021 .

[3]  L. Carey,et al.  Examining Conditions Supporting the Development of Anomalous Charge Structures in Supercell Thunderstorms in the Southeastern United States , 2021, Journal of Geophysical Research: Atmospheres.

[4]  Bruno L. Medina,et al.  Characterizing Charge Structure in Central Argentina Thunderstorms During RELAMPAGO Utilizing a New Charge Layer Polarity Identification Method , 2021, Earth and space science.

[5]  D. MacGorman,et al.  Intraregional Comparisons of the Near‐Storm Environments of Storms Dominated by Frequent Positive Versus Negative Cloud‐to‐Ground Flashes , 2021, Earth and Space Science.

[6]  L. Carey,et al.  Observations of Anomalous Charge Structures in Supercell Thunderstorms in the Southeastern United States , 2020, Journal of Geophysical Research: Atmospheres.

[7]  D. MacGorman,et al.  Microphysical and Transportive Contributions to Normal and Anomalous Polarity Subregions in the 29–30 May 2012 Kingfisher Storm , 2020, Journal of Geophysical Research: Atmospheres.

[8]  Bruno L. Medina,et al.  The RELAMPAGO Lightning Mapping Array: Overview and Initial Comparison with the Geostationary Lightning Mapper , 2020, Journal of Atmospheric and Oceanic Technology.

[9]  Jennifer G. Wilson,et al.  The Impact of Cloud-To-Ground Lightning Type on the Differences in Return Stroke Peak Current Over Land and Ocean , 2019, IEEE Access.

[10]  S. Miller,et al.  Geostationary Lightning Mapper and Earth Networks Lightning Detection Over the Contiguous United States and Dependence on Flash Characteristics , 2019, Journal of Geophysical Research: Atmospheres.

[11]  V. Rakov,et al.  Compact intracloud discharges: New classification of field waveforms and identification by lightning locating systems , 2019, Electric Power Systems Research.

[12]  R. Trapp,et al.  Convective Storm Life Cycle and Environments near the Sierras de Córdoba, Argentina , 2018, Monthly Weather Review.

[13]  M. D. Tran,et al.  Evaluation of ENTLN Performance Characteristics Based on the Ground Truth Natural and Rocket‐Triggered Lightning Data Acquired in Florida , 2017 .

[14]  K. Cummins,et al.  Negative first stroke leader characteristics in cloud‐to‐ground lightning over land and ocean , 2017 .

[15]  W. Koshak,et al.  Why do oceanic negative cloud‐to‐ground lightning exhibit larger peak current values? , 2016 .

[16]  Richard J. Blakeslee,et al.  Where Are the Lightning Hotspots on Earth , 2015 .

[17]  J. Wallace,et al.  Diurnal and Seasonal Lightning Variability over the Gulf Stream and the Gulf of Mexico , 2015 .

[18]  Scott D. Rudlosky,et al.  Evaluating ENTLN performance relative to TRMM/LIS , 2015 .

[19]  R. Jayaratne,et al.  On the peak amplitude of lightning return stroke currents striking the sea , 2014 .

[20]  Stephanie A. Weiss,et al.  Continuous variability in thunderstorm primary electrification and an evaluation of inverted-polarity terminology , 2014 .

[21]  Umran S. Inan,et al.  Highly intense lightning over the oceans: Estimated peak currents from global GLD360 observations , 2013 .

[22]  Kristin M. Calhoun,et al.  Evolution of Lightning Activity and Storm Charge Relative to Dual-Doppler Analysis of a High-Precipitation Supercell Storm , 2013 .

[23]  Christopher J. Schultz,et al.  Lightning and Severe Weather: A Comparison between Total and Cloud-to-Ground Lightning Trends , 2011 .

[24]  E. A. Wright,et al.  The role of cold fronts in the onset of the monsoon season in the South Atlantic convergence zone , 2011 .

[25]  W. D. Rust,et al.  Formation of Charge Structures in a Supercell , 2010 .

[26]  P. Gatlin,et al.  A Total Lightning Trending Algorithm to Identify Severe Thunderstorms , 2010 .

[27]  Osmar Pinto,et al.  Climatology of large peak current cloud-to-ground lightning flashes in southeastern Brazil , 2009 .

[28]  T. Mote,et al.  A climatology of warm‐season mesoscale convective complexes in subtropical South America , 2009 .

[29]  Kenneth L. Cummins,et al.  Characteristics of cloud-to-ground lightning in warm-season thunderstorms in the Central Great Plains , 2009 .

[30]  D. Stensrud,et al.  Serial Upstream-Propagating Mesoscale Convective System Events over Southeastern South America , 2008 .

[31]  S. Cummer,et al.  Rare measurements of a sprite with halo event driven by a negative lightning discharge over Argentina , 2008 .

[32]  Osmar Pinto,et al.  Maximum cloud-to-ground lightning flash densities observed by lightning location systems in the tropical region: A review , 2007 .

[33]  S. Cummer,et al.  A very active sprite-producing storm observed over Argentina , 2007 .

[34]  Robert H. Holzworth,et al.  Detection efficiency of the VLF World-Wide Lightning Location Network (WWLLN): initial case study , 2006 .

[35]  David P. Yorty,et al.  WHERE ARE THE MOST INTENSE THUNDERSTORMS ON EARTH , 2006 .

[36]  Eric C. Bruning,et al.  The Electrical Structure of Two Supercell Storms during STEPS , 2005 .

[37]  S. Cummer,et al.  Implications of lightning charge moment changes for sprite initiation , 2005 .

[38]  Timothy J. Lang,et al.  Origins of positive cloud‐to‐ground lightning flashes in the stratiform region of a mesoscale convective system , 2004 .

[39]  Manoel Alonso Gan,et al.  The South America Monsoon Circulation and Its Relationship to Rainfall over West-Central Brazil , 2004 .

[40]  T. E. Nelson,et al.  Upward Electrical Discharges From Thunderstorm Tops , 2003 .

[41]  Timothy J. Lang,et al.  Relationships between Convective Storm Kinematics, Precipitation, and Lightning , 2002 .

[42]  W. D. Rust,et al.  Possibly inverted‐polarity electrical structures in thunderstorms during STEPS , 2002 .

[43]  Steven A. Cummer,et al.  Lightning charge moment changes for the initiation of sprites , 2002 .

[44]  Tsutomu Takahashi,et al.  NOTES AND CORRESPONDENCE Reexamination of Riming Electrification in a Wind Tunnel , 2002 .

[45]  W. David Rust,et al.  Serial soundings of electric field through a mesoscale convective system , 2001 .

[46]  W. D. Rust,et al.  Electrical structure in thunderstorm convective regions: 1. Mesoscale convective systems , 1998 .

[47]  W. D. Rust,et al.  Electric field measurements above mesoscale convective systems , 1996 .

[48]  W. David Rust,et al.  Horizontal Distribution of Electrical and Meteorological Conditions across the Stratiform Region of a Mesoscale Convective System , 1994 .

[49]  Earle R. Williams,et al.  The tripole structure of thunderstorms , 1989 .

[50]  Donald R. MacGorman,et al.  Cloud-to-Ground Lightning Activity in the 10–11 June 1985 Mesoscale Convective System Observed during the Oklahoma–Kansas PRE-STORM Project , 1988 .

[51]  Tsutomu Takahashi,et al.  Riming Electrification as a Charge Generation Mechanism in Thunderstorms , 1978 .