Unsupervised learning of mixture regression models for longitudinal data
暂无分享,去创建一个
Tao Huang | Peirong Xu | Heng Peng | Heng Peng | Tao Huang | Peirong Xu
[1] Arnovst Kom'arek,et al. Clustering for multivariate continuous and discrete longitudinal data , 2013, 1304.4448.
[2] Emmanuel Lesaffre,et al. Generalized linear mixed model with a penalized Gaussian mixture as a random effects distribution , 2008, Comput. Stat. Data Anal..
[3] G. Celeux,et al. Mixture of linear mixed models for clustering gene expression profiles from repeated microarray experiments , 2005 .
[4] E. Gassiat,et al. Testing in locally conic models, and application to mixture models , 1997 .
[5] Weixin Yao,et al. Label switching and its solutions for frequentist mixture models , 2015 .
[6] G. Casella,et al. Clustering using objective functions and stochastic search , 2008 .
[7] Lan Wang,et al. GEE analysis of clustered binary data with diverging number of covariates , 2011, 1103.1795.
[8] Peirong Xu,et al. Estimation for a marginal generalized single-index longitudinal model , 2012, J. Multivar. Anal..
[9] Gerhard Tutz,et al. Clustering in linear‐mixed models with a group fused lasso penalty , 2014, Biometrical journal. Biometrische Zeitschrift.
[10] E. Gassiat,et al. Testing the order of a model using locally conic parametrization : population mixtures and stationary ARMA processes , 1999 .
[11] A. Maruotti. Mixed Hidden Markov Models for Longitudinal Data: An Overview , 2011 .
[12] Christophe Genolini,et al. KmL: k-means for longitudinal data , 2010, Comput. Stat..
[13] Jiahua Chen,et al. Order Selection in Finite Mixture Models With a Nonsmooth Penalty , 2008 .
[14] Adrian E. Raftery,et al. Model-Based Clustering, Discriminant Analysis, and Density Estimation , 2002 .
[15] Peirong Xu,et al. Efficient estimation for marginal generalized partially linear single-index models with longitudinal data , 2016 .
[16] Runze Li,et al. Tuning parameter selectors for the smoothly clipped absolute deviation method. , 2007, Biometrika.
[17] G. Schwarz. Estimating the Dimension of a Model , 1978 .
[18] P. Grambsch,et al. Prognosis in primary biliary cirrhosis: Model for decision making , 1989, Hepatology.
[19] K. Lindor,et al. Primary biliary cirrhosis , 2003, The Lancet.
[20] P. Grambsch,et al. Primary biliary cirrhosis: Prediction of short‐term survival based on repeated patient visits , 1994, Hepatology.
[21] M. Kaplan,et al. Primary biliary cirrhosis , 1998, Hepatology.
[22] A. Pickles,et al. Latent mixture models for multivariate and longitudinal outcomes , 2010, Statistical methods in medical research.
[23] J. Hoofnagle,et al. Randomized trial of chlorambucil for primary biliary cirrhosis. , 1986, Gastroenterology.
[24] J. Wooldridge,et al. Quasi-maximum likelihood estimation and inference in dynamic models with time-varying covariances , 1992 .
[25] C. Hennig. Breakdown points for maximum likelihood estimators of location–scale mixtures , 2004, math/0410073.
[26] G. Verbeke,et al. A Linear Mixed-Effects Model with Heterogeneity in the Random-Effects Population , 1996 .
[27] Gerhard Tutz,et al. Clustering in linear mixed models with approximate Dirichlet process mixtures using EM algorithm , 2013 .
[28] T. Ferguson. A Course in Large Sample Theory , 1996 .
[29] S. Zeger,et al. Longitudinal data analysis using generalized linear models , 1986 .
[30] Yanan Fan,et al. Relabelling algorithms for mixture models with applications for large data sets , 2016 .
[31] Tao Huang,et al. Model Selection for Gaussian Mixture Models , 2013, 1301.3558.
[32] Annie Qu,et al. Efficient classification for longitudinal data , 2014, Comput. Stat. Data Anal..
[33] J. A. Roth,et al. A patient with primary biliary cirrhosis and multiple sclerosis. , 1992, The American journal of medicine.
[34] A. Raftery,et al. Detecting features in spatial point processes with clutter via model-based clustering , 1998 .
[35] Fernando A. Quintana,et al. Model-based clustering for longitudinal data , 2008, Comput. Stat. Data Anal..
[36] Jianqing Fan,et al. Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties , 2001 .
[37] Jianhua Z. Huang,et al. Efficient estimation in marginal partially linear models for longitudinal/clustered data using splines , 2007 .
[38] B. Leroux. Consistent estimation of a mixing distribution , 1992 .
[39] R. W. Wedderburn. Quasi-likelihood functions, generalized linear models, and the Gauss-Newton method , 1974 .
[40] E. Erosheva,et al. Breaking Bad: Two Decades of Life-Course Data Analysis in Criminology, Developmental Psychology, and Beyond , 2014 .
[41] L. Wasserman,et al. Practical Bayesian Density Estimation Using Mixtures of Normals , 1997 .