Reconfigurable liquid metal circuits by Laplace pressure shaping

We report reconfigurable circuits formed by liquid metal shaping with <10 pounds per square inch (psi) Laplace and vacuum pressures. Laplace pressure drives liquid metals into microreplicated trenches, and upon release of vacuum, the liquid metal dewets into droplets that are compacted to 10–100× less area than when in the channel. Experimental validation includes measurements of actuation speeds exceeding 30 cm/s, simple erasable resistive networks, and switchable 4.5 GHz antennas. Such capability may be of value for next generation of simple electronic switches, tunable antennas, adaptive reflectors, and switchable metamaterials.

[1]  L. Wong,et al.  Flexible visible-infrared metamaterials and their applications in highly sensitive chemical and biological sensing. , 2011, Nano letters.

[2]  Bruno Berge,et al.  Two liquids wetting and low hysteresis electrowetting on dielectric applications. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[3]  G. Lazzi,et al.  Flexible Liquid Metal Alloy (EGaIn) Microstrip Patch Antenna , 2012, IEEE Transactions on Antennas and Propagation.

[4]  Ajay Nahata,et al.  Reconfigurable plasmonic devices using liquid metals. , 2012, Optics express.

[5]  W. M. Haynes CRC Handbook of Chemistry and Physics , 1990 .

[6]  R. Robinson,et al.  Standard Solutions for Humidity Control at 25° C. , 1949 .

[7]  George M. Whitesides,et al.  Viscoelastic properties of oxide-coated liquid metals , 2009 .

[8]  Jean Berthier,et al.  Microdrops and digital microfluidics , 2008 .

[9]  G. Whitesides,et al.  Eutectic Gallium‐Indium (EGaIn): A Liquid Metal Alloy for the Formation of Stable Structures in Microchannels at Room Temperature , 2008 .

[10]  Andrew J. Steckl,et al.  Liquid-state field-effect transistors using electrowetting , 2007 .

[11]  Ian Papautsky,et al.  Reconfigurable virtual electrowetting channels. , 2012, Lab on a chip.

[12]  D. Peroulis,et al.  Liquid RF MEMS Wideband Reflective and Absorptive Switches , 2007, IEEE Transactions on Microwave Theory and Techniques.

[13]  P. Surmann,et al.  Voltammetric analysis using a self-renewable non-mercury electrode , 2005, Analytical and bioanalytical chemistry.

[14]  Chang-Jin Kim,et al.  Characterization of Nontoxic Liquid-Metal Alloy Galinstan for Applications in Microdevices , 2012, Journal of Microelectromechanical Systems.

[15]  Orhan Ozdemir,et al.  Adsorption and surface tension analysis of concentrated alkali halide brine solutions , 2009 .

[16]  M. Dickey,et al.  A frequency shifting liquid metal antenna with pressure responsiveness , 2011 .

[17]  R. T. Williams,et al.  Grain boundary diffusion of liquid metal coolants in optical materials for use with high power synchrotron radiation , 1984 .

[18]  Fathi Aqra,et al.  Theoretical Calculations of the Surface Tension of Liquid Transition Metals , 2011 .

[19]  R. Fair,et al.  Electrowetting-based actuation of droplets for integrated microfluidics. , 2002, Lab on a chip.

[20]  Derek Abbott,et al.  Elastomeric silicone substrates for terahertz fishnet metamaterials , 2012 .

[21]  Di Gao,et al.  Transparent superhydrophobic and highly oleophobic coatings. , 2010, Faraday discussions.

[22]  W. Giauque,et al.  The Heat Capacity of Mercury from 15 to 330°K. Thermodynamic Properties of Solid Liquid and Gas. Heat of Fusion and Vaporization1. , 1953 .