Signaling-based neural networks for cellular computation

Cellular signaling pathways are responsible for decision making that sustains life. Most signaling pathways include post-translational modification cycles, that process multiple inputs and are tightly interconnected. Here we consider a model for phosphorylation/dephosphorylation cycles, and we show that under some assumptions they can operate as molecular neurons or perceptrons, that generate sigmoidal-like activation functions by processing sums of inputs with positive and negative weights. We carry out a steady-state and structural stability analysis for single molecular perceptrons as well as for feedforward interconnections, concluding that interconnected phosphorylation/dephosphorylation cycles may work as multilayer biomolecular neural networks (BNNs) with the capacity to perform a variety of computations. As an application, we design signaling networks that behave as linear and non-linear classifiers.