Impurity models and products of random matrices

This is an extended version of lectures given at the Summer School on Stochastic Processes and Random Matrices, held at the École de Physique, Les Houches, in July 2015. The aim is to introduce the reader to the theory of one-dimensional disordered systems and products of random matrices, confined to the 2×2 case. The notion of impurity model— that is, a system in which the interactions are highly localised— links the two themes and enables their study by elementary mathematical tools. After discussing the spectral theory of some impurity models, we state and illustrate Furstenberg’s theorem, which gives sufficient conditions for the exponential growth of a product of independent, identically-distributed matrices.

[1]  V. Serov Spectra of Self-Adjoint Operators , 2017 .

[2]  Kristian Kirsch,et al.  Theory Of Ordinary Differential Equations , 2016 .

[3]  Y. Tourigny,et al.  One-Dimensional Disordered Quantum Mechanics and Sinai Diffusion with Random Absorbers , 2013, 1310.6519.

[4]  Y. Tourigny,et al.  Lyapunov exponents, one-dimensional Anderson localization and products of random matrices , 2012, 1207.0725.

[5]  Y. Tourigny,et al.  Supersymmetric Quantum Mechanics with Lévy Disorder in One Dimension , 2011, 1105.5506.

[6]  Yves Tourigny,et al.  Products of Random Matrices and Generalised Quantum Point Scatterers , 2010, 1004.2415.

[7]  C. Hagendorf,et al.  The effect of boundaries on the spectrum of a one-dimensional random mass Dirac Hamiltonian , 2009, 0909.2205.

[8]  P. Doussal Sinai model in presence of dilute absorbers , 2009, 0906.0267.

[9]  C. Texier,et al.  Localization for one-dimensional random potentials with large local fluctuations , 2008, 0807.0772.

[10]  Yves Tourigny,et al.  Explicit invariant measures for products of random matrices , 2005 .

[11]  D. Applebaum Lévy Processes—From Probability to Finance and Quantum Groups , 2004 .

[12]  K. Mallick,et al.  Anomalous diffusion in nonlinear oscillators with multiplicative noise. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[13]  Divakar Viswanath,et al.  Random Fibonacci sequences and the number 1.13198824 , 2000, Math. Comput..

[14]  C. Texier Individual energy level distributions for one-dimensional diagonal and off-diagonal disorder , 2000, cond-mat/0004285.

[15]  Izrailev,et al.  Anderson localization as a parametric instability of the linear kicked oscillator , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[16]  A. Comtet,et al.  One-dimensional disordered supersymmetric quantum mechanics: A brief survey , 1997, cond-mat/9707313.

[17]  A. Altland,et al.  Nonstandard symmetry classes in mesoscopic normal-superconducting hybrid structures , 1996, cond-mat/9602137.

[18]  Georg Junker Supersymmetric Methods in Quantum and Statistical Physics , 1996 .

[19]  A. Comtet,et al.  Localization Properties in One-Dimensional Disordered Supersymmetric Quantum Mechanics , 1995, cond-mat/9501095.

[20]  T. Stieltjes Recherches sur les fractions continues , 1995 .

[21]  H. McKean A limit law for the ground state of Hill's equation , 1994 .

[22]  A. Comtet,et al.  Classical diffusion of a particle in a one-dimensional random force field , 1990 .

[23]  J. Luck,et al.  The distribution of the reflection phase of disordered conductors , 1990 .

[24]  R. Carmona,et al.  Spectral Theory of Random Schrödinger Operators , 1990 .

[25]  L. Miglio Introduction to the theory of disordered systems , 1989 .

[26]  D. Hansel,et al.  On diffusion equations for dynamical systems driven by noise , 1989 .

[27]  G. Letac A contraction principle for certain Markov chains and its applications , 1986 .

[28]  Charles M. Newman,et al.  The Stability of Large Random Matrices and Their Products , 1984 .

[29]  S. Kotani Ljapunov Indices Determine Absolutely Continuous Spectra of Stationary Random One-dimensional Schrödinger Operators , 1984 .

[30]  G. Letac,et al.  A characterization of the generalized inverse Gaussian distribution by continued fractions , 1983 .

[31]  T. Nieuwenhuizen Exact electronic spectra and inverse localization lengths in one-dimensional random systems: I. Random alloy, liquid metal and liquid alloy , 1983 .

[32]  I. S. Kats SPECTRAL FUNCTIONS OF A STRING , 1983 .

[33]  S. A. Molčanov,et al.  The local structure of the spectrum of the one-dimensional Schrödinger operator , 1981 .

[34]  L. Pastur Spectral properties of disordered systems in the one-body approximation , 1980 .

[35]  Mourad E. H. Ismail,et al.  Special Functions, Stieltjes Transforms and Infinite Divisibility , 1979 .

[36]  Density of states in a one-dimensional random potential , 1977 .

[37]  S. Kotani On Asymptotic Behaviour of the Spectra of a One-Dimensional Hamiltonian with a Certain Random Coefficient , 1976 .

[38]  P. Sulem Total reflection of a plane wave from a semi-infinite, one-dimensional random medium: Distribution of the phase☆ , 1973 .

[39]  G. F. Simmons Differential Equations With Applications and Historical Notes , 1972 .

[40]  L. Pastur,et al.  ON THE SPECTRUM OF THE ONE-DIMENSIONAL SCHRÖDINGER EQUATION WITH A RANDOM POTENTIAL , 1970 .

[41]  Bertrand I. Halperin,et al.  Green's Functions for a Particle in a One-Dimensional Random Potential , 1965 .

[42]  David M. Miller,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[43]  H. Furstenberg Noncommuting random products , 1963 .

[44]  P. Dean,et al.  On Disordered One-dimensional Crystals , 1959 .

[45]  W. Feller,et al.  An Introduction to Probability Theory and its Applications , 1958 .

[46]  P. Anderson Absence of Diffusion in Certain Random Lattices , 1958 .

[47]  R. Bellman Dynamics of a Disordered Linear Chain , 1956 .

[48]  S. Rice Mathematical analysis of random noise , 1944 .

[49]  W. Penney,et al.  Quantum Mechanics of Electrons in Crystal Lattices , 1931 .