On stable uniqueness in linear semi-infinite optimization

This paper is intended to provide conditions for the stability of the strong uniqueness of the optimal solution of a given linear semi-infinite optimization (LSIO) problem, in the sense of maintaining the strong uniqueness property under sufficiently small perturbations of all the data. We consider LSIO problems such that the family of gradients of all the constraints is unbounded, extending earlier results of Nürnberger for continuous LSIO problems, and of Helbig and Todorov for LSIO problems with bounded set of gradients. To do this we characterize the absolutely (affinely) stable problems, i.e., those LSIO problems whose feasible set (its affine hull, respectively) remains constant under sufficiently small perturbations.

[1]  Nguyen Dinh,et al.  Dual Characterizations of Set Containments with Strict Convex Inequalities , 2006, J. Glob. Optim..

[2]  Elijah Polak,et al.  Semi-Infinite Optimization , 1997 .

[3]  Abraham Charnes,et al.  ON REPRESENTATIONS OF SEMI-INFINITE PROGRAMS WHICH HAVE NO DUALITY GAPS. , 1965 .

[4]  B. Brosowski,et al.  Parametric Optimization and Approximation , 1985 .

[5]  B. D. Craven,et al.  Non-Linear Parametric Optimization (B. Bank, J. Guddat, D. Klatte, B. Kummer and K. Tammer) , 1984 .

[6]  M. J. Cánovas,et al.  Stability of Indices in the KKT Conditions and Metric Regularity in Convex Semi-Infinite Optimization , 2008 .

[7]  George B. Dantzig,et al.  Linear programming and extensions , 1965 .

[8]  M. A. López-Cerdá,et al.  Linear Semi-Infinite Optimization , 1998 .

[9]  J. M. Fort A unified theory of semi-continuity , 1949 .

[10]  B. Bank,et al.  Non-Linear Parametric Optimization , 1983 .

[11]  Miguel A. Goberna,et al.  On the Stability of the Boundary of the Feasible Set in Linear Optimization , 2003 .

[12]  Kenneth O. Kortanek,et al.  Semi-Infinite Programming and Applications , 1983, ISMP.

[13]  Günther Nürnberger,et al.  Unicity in Semi-Infinite Optimization , 1984 .

[14]  R. Hettich,et al.  Approximation und Optimierung , 1982 .

[15]  Related Topics,et al.  Parametric Optimization and Related Topics V , 1987 .

[16]  Marco A. López,et al.  Extended Active Constraints in Linear Optimization with Applications , 2003, SIAM J. Optim..

[17]  Marco A. López,et al.  Metric Regularity in Convex Semi-Infinite Optimization under Canonical Perturbations , 2007, SIAM J. Optim..

[18]  O. Mangasarian Uniqueness of solution in linear programming , 1979 .

[19]  Marco A. López,et al.  A Generic Result in Linear Semi-Infinite Optimization , 2003 .

[20]  G. Nürnberger Global unicity in optimization and approximation , 1985 .

[21]  S. Helbig,et al.  Unicity Results for General Linear Semi-Infinite Optimization Problems Using a New Concept of Active Constraints , 1998 .

[22]  M. Goberna,et al.  Unicity in linear optimization , 1995 .

[23]  Rainer Hettich,et al.  A Review of Numerical Methods for Semi-Infinite Optimization , 1983 .

[24]  Miguel A. Goberna,et al.  Sensitivity analysis in linear semi-infinite programming: Perturbing cost and right-hand-side coefficients , 2007, Eur. J. Oper. Res..