Linear Frequency Diverse Array Manifold Geometry and Ambiguity Analysis

Different from phased-array, frequency diverse array (FDA) offers range-dependent beampattern and thus provides new application potentials. But, there is a fundamental question: what is the FDA manifold geometric and ambiguity properties? In this paper, the FDA manifold geometric and ambiguity properties are investigated via manifold geometry analysis; the FDA resolution and detection capabilities are derived as a function of the manifold length and first curvature for the sources with unequal powers. The ambiguities inherent in a linear FDA manifold is investigated. Under the same conditions, FDA has better detection and resolution capabilities than conventional phased array. Since FDA offers a range-dependent beampattern, some of the manifold vectors that are linearly dependent in phased array, will became linearly independent in FDA. For these reasons, when compared to a phased-array radar, FDA radar can resolve more sources. All the derived expressions are validated by the extensive simulation results.

[1]  Xiang Li,et al.  MIMO Radar Sensitivity Analysis of Antenna Position for Direction Finding , 2012, IEEE Transactions on Signal Processing.

[2]  Athanassios Manikas,et al.  Study of ambiguities of linear arrays , 1994, Proceedings of ICASSP '94. IEEE International Conference on Acoustics, Speech and Signal Processing.

[3]  Randolph L. Moses,et al.  On the geometry of isotropic arrays , 2003, IEEE Trans. Signal Process..

[4]  Yan-chao Li,et al.  Mixed Near-Field and Far-Field Sources Localization Using the Uniform Linear Sensor Array , 2013, IEEE Sensors Journal.

[5]  Joohwan Chun,et al.  Frequency diversity in multistatic radars , 2008, 2008 IEEE Radar Conference.

[6]  Qing Huo Liu,et al.  Resolving manifold ambiguities for direction-of-arrival estimation of sparse array using semi-circular substrates , 2013 .

[7]  Qing Huo Liu,et al.  Resolving ambiguities in DOA estimation by optimizing the element orientations , 2013, 2013 IEEE Antennas and Propagation Society International Symposium (APSURSI).

[8]  C.J. Baker,et al.  Frequency diverse array radars , 2006, 2006 IEEE Conference on Radar.

[9]  N.J. Malloy Array Manifold Geometry and Sparse Volumetric Array Design Optimization , 2007, 2007 Conference Record of the Forty-First Asilomar Conference on Signals, Systems and Computers.

[10]  Wen-Qin Wang,et al.  Frequency Diverse Array Radar Cramér-Rao Lower Bounds for Estimating Direction, Range, and Velocity , 2014 .

[11]  Athanassios Manikas,et al.  Existence and Uniqueness of Hyperhelical Array Manifold Curves , 2013, IEEE Journal of Selected Topics in Signal Processing.

[12]  Douglas A. Gray,et al.  Positive-definite Toeplitz completion in DOA estimation for nonuniform linear antenna arrays. II. Partially augmentable arrays , 1998, IEEE Trans. Signal Process..

[13]  Athanassios Manikas,et al.  Differential Geometry In Array Processing , 2004 .

[14]  Wen-Qin Wang,et al.  Transmit Subaperturing for Range and Angle Estimation in Frequency Diverse Array Radar , 2014, IEEE Transactions on Signal Processing.

[15]  Volodymyr Vasylyshyn Direction of arrival estimation using ESPRIT with sparse arrays , 2009, 2009 European Radar Conference (EuRAD).

[16]  Say Song Goh,et al.  A study of the rank-ambiguity issues in direction-of-arrival estimation , 1996, IEEE Trans. Signal Process..

[17]  Alexei Gorokhov,et al.  Positive-definite Toeplitz completion in DOA estimation for nonuniform linear antenna arrays. II. Partially augmentable arrays , 1998, IEEE Transactions on Signal Processing.

[18]  S. Lawrence Marple,et al.  Observability conditions for multiple signal direction finding and array sensor localization , 1992, IEEE Trans. Signal Process..

[19]  Yang Song,et al.  A Lower Bound of DOA-Estimates by an Array Randomly Subject to Sensor-Breakdown , 2012, IEEE Sensors Journal.

[20]  Kah-Chye Tan,et al.  A detailed derivation of arrays free of higher rank ambiguities , 1996, IEEE Trans. Signal Process..

[21]  V. Vasylyshyn 2-D direction finding with subarray - based antenna arrays , 2008, 2008 European Radar Conference.

[22]  Jian Li,et al.  MIMO Radar with Colocated Antennas , 2007, IEEE Signal Processing Magazine.

[23]  Zaiping Nie,et al.  Resolving Manifold Ambiguities for Sparse Array Using Planar Substrates , 2012, IEEE Transactions on Antennas and Propagation.

[24]  Wen-Qin Wang,et al.  Range-Angle-Dependent Beamforming by Frequency Diverse Array Antenna , 2012 .

[25]  M. H. Er,et al.  A study of the uniqueness of steering vectors in array processing , 1993, Signal Process..

[26]  Athanassios Manikas,et al.  Manifold studies of nonlinear antenna array geometries , 2001, IEEE Trans. Signal Process..

[27]  Michael C. Wicks,et al.  Forward-looking radar GMTI benefits using a linear frequency diverse array , 2006 .

[28]  Wen-Qin Wang,et al.  Nonuniform Frequency Diverse Array for Range-Angle Imaging of Targets , 2014, IEEE Sensors Journal.

[29]  Michael D. Zoltowski,et al.  Closed-form eigenstructure-based direction finding using arbitrary but identical subarrays on a sparse uniform Cartesian array grid , 2000, IEEE Trans. Signal Process..

[30]  Athanassios Manikas,et al.  Array Manifold Curves in ${\Fraktur {C}}^{N}$ and Their Complex Cartan Matrix , 2013, IEEE Journal of Selected Topics in Signal Processing.

[31]  Hamid Reza Karimi,et al.  Study of the detection and resolution capabilities of a one-dimensional array of sensors by using differential geometry , 1994 .

[32]  Marius Pesavento,et al.  Virtual array design for array interpolation using differential geometry , 2004, 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[33]  Athanassios Manikas,et al.  Modeling and estimation of ambiguities in linear arrays , 1998, IEEE Trans. Signal Process..

[34]  Houcem Gazzah,et al.  Optimum Antenna Arrays for Isotropic Direction Finding , 2011, IEEE Transactions on Aerospace and Electronic Systems.

[35]  Alexei Gorokhov,et al.  Resolving manifold ambiguities in direction-of-arrival estimation for nonuniform linear antenna arrays , 1999, IEEE Trans. Signal Process..

[36]  Martin Kleinsteuber,et al.  On the Deterministic CRB for DOA Estimation in Unknown Noise Fields Using Sparse Sensor Arrays , 2008, IEEE Transactions on Signal Processing.