UvA-DARE (Digital Academic Repository) Spacetime as a quantum circuit

: We propose that finite cutoff regions of holographic spacetimes represent quantum circuits that map between boundary states at different times and Wilsonian cutoffs, and that the complexity of those quantum circuits is given by the gravitational action. The optimal circuit minimizes the gravitational action. This is a generalization of both the “complexity equals volume” conjecture to unoptimized circuits, and path integral optimization to finite cutoffs. Using tools from holographic T ¯ T , we find that surfaces of constant scalar curvature play a special role in optimizing quantum circuits. We also find an interesting connection of our proposal to kinematic space, and discuss possible circuit representations and gate counting interpretations of the gravitational action.

[1]  J. Urry Complexity , 2006, Interpreting Art.

[2]  Shubho R. Roy,et al.  Holographic complexity of LST and single trace TT , JT and TJ deformations , 2022 .

[3]  B. Czech,et al.  Query complexity and cutoff dependence of the CFT2 ground state , 2021 .

[4]  T. Takayanagi,et al.  Path integral optimization from Hartle-Hawking wave function , 2020, 2011.08188.

[5]  R. Myers,et al.  Quantum extremal islands made easy. Part III. Complexity on the brane , 2020, Journal of High Energy Physics.

[6]  Ruben Monten,et al.  T ¯ T and the mirage of a bulk cutoff , 2021 .

[7]  Aitor Lewkowycz,et al.  Gravitational path integral from the T2 deformation , 2020, Journal of High Energy Physics.

[8]  H. Geng TT¯ Deformation and the Complexity=Volume Conjecture , 2019, Fortschritte der Physik.

[9]  A. Naseh,et al.  Path integral optimization for TT¯ deformation , 2019, Physical Review D.

[10]  D. Gross,et al.  TT¯ in AdS2 and quantum mechanics , 2019, Physical Review D.

[11]  D. Gross,et al.  Hamiltonian deformations in quantum mechanics, TT¯ , and the SYK model , 2019, Physical Review D.

[12]  Bin Chen,et al.  Surface/state correspondence and TT¯ deformation , 2019, 1907.12110.

[13]  J. Camps The Parts of the Gravitational Field. , 2019, 1905.10121.

[14]  Hugo A. Camargo,et al.  Path Integral Optimization as Circuit Complexity. , 2019, Physical review letters.

[15]  Geoffrey Penington,et al.  Holographic Tensor Networks in Full AdS/CFT , 2019, 1902.10157.

[16]  Geoffrey Penington,et al.  Beyond toy models: distilling tensor networks in full AdS/CFT , 2018, Journal of High Energy Physics.

[17]  Aitor Lewkowycz,et al.  Prepared for submission to JHEP Complexity and the Bulk Volume , A New York Time Story , 2019 .

[18]  Thomas Hartman,et al.  Holography at finite cutoff with a T2 deformation , 2018, Journal of High Energy Physics.

[19]  T. Takayanagi Holographic spacetimes as quantum circuits of path-integrations , 2018, Journal of High Energy Physics.

[20]  H. Verlinde,et al.  Moving the CFT into the bulk with TT¯$$ T\overline{T} $$ , 2018 .

[21]  F. Pastawski,et al.  Toward a Definition of Complexity for Quantum Field Theory States. , 2017, Physical review letters.

[22]  B. Czech Einstein Equations from Varying Complexity. , 2017, Physical review letters.

[23]  Sotaro Sugishita,et al.  On the time dependence of holographic complexity , 2017, 1709.10184.

[24]  R. Myers,et al.  Circuit complexity in quantum field theory , 2017, 1707.08570.

[25]  T. Takayanagi,et al.  Liouville action as path-integral complexity: from continuous tensor networks to AdS/CFT , 2017, 1706.07056.

[26]  T. Takayanagi,et al.  Anti-de Sitter Space from Optimization of Path Integrals in Conformal Field Theories. , 2017, Physical review letters.

[27]  F. A. Smirnov,et al.  On space of integrable quantum field theories , 2016, 1608.05499.

[28]  P. Nguyen,et al.  Noether charge, black hole volume, and complexity , 2016, 1610.02038.

[29]  Rafael D. Sorkin,et al.  Gravitational action with null boundaries , 2016, 1609.00207.

[30]  J. Boer,et al.  Entanglement, holography and causal diamonds , 2016, Journal of High Energy Physics.

[31]  Daniel A. Roberts,et al.  Holographic Complexity Equals Bulk Action? , 2016, Physical review letters.

[32]  Sam McCandlish,et al.  A stereoscopic look into the bulk , 2016, 1604.03110.

[33]  Daniel A. Roberts,et al.  Complexity, action, and black holes , 2015, 1512.04993.

[34]  R. Tateo,et al.  T T-deformed 2D quantum eld theories , 2016 .

[35]  James Sully,et al.  Tensor networks from kinematic space , 2015, 1512.01548.

[36]  T. Takayanagi,et al.  Continuous Multiscale Entanglement Renormalization Ansatz as Holographic Surface-State Correspondence. , 2015, Physical review letters.

[37]  James Sully,et al.  Integral geometry and holography , 2015, 1505.05515.

[38]  G. Evenbly,et al.  Tensor Network Renormalization Yields the Multiscale Entanglement Renormalization Ansatz. , 2015, Physical review letters.

[39]  Leonard Susskind,et al.  Entanglement is not enough , 2014, 1411.0690.

[40]  M. Flory,et al.  Bending branes for DCFT in two dimensions , 2014, 1410.7811.

[41]  V. Balasubramanian,et al.  Entwinement and the emergence of spacetime , 2014, 1406.5859.

[42]  L. Susskind,et al.  Complexity and Shock Wave Geometries , 2014, 1406.2678.

[43]  Netta Engelhardt,et al.  Extremal surface barriers , 2013, 1312.3699.

[44]  Aron C. Wall Maximin surfaces, and the strong subadditivity of the covariant holographic entanglement entropy , 2012, 1211.3494.

[45]  Roman Orus,et al.  A Practical Introduction to Tensor Networks: Matrix Product States and Projected Entangled Pair States , 2013, 1306.2164.

[46]  F. Verstraete,et al.  Entanglement renormalization for quantum fields in real space. , 2011, Physical review letters.

[47]  Masahiro Nozaki,et al.  Holographic geometry of entanglement renormalization in quantum field theories , 2012, 1208.3469.

[48]  F. Nogueira,et al.  The gravity dual of a density matrix , 2012, 1204.1330.

[49]  B. Swingle,et al.  Entanglement Renormalization and Holography , 2009, 0905.1317.

[50]  C'edric B'eny Causal structure of the entanglement renormalization ansatz , 2011, 1110.4872.

[51]  T. Takayanagi,et al.  Aspects of AdS/BCFT , 2011, 1108.5152.

[52]  T. Takayanagi Holographic Dual of BCFT , 2011, 1105.5165.

[53]  G. Vidal Class of quantum many-body states that can be efficiently simulated. , 2006, Physical review letters.

[54]  T. Takayanagi,et al.  Holographic Derivation of Entanglement Entropy from AdS/CFT , 2006, hep-th/0603001.

[55]  Mile Gu,et al.  Quantum Computation as Geometry , 2006, Science.

[56]  S. C. Davis Generalized Israel junction conditions for a Gauss-Bonnet brane world , 2002, hep-th/0208205.

[57]  L. Susskind,et al.  The Holographic bound in anti-de Sitter space , 1998, hep-th/9805114.

[58]  J. Maldacena The Large-N Limit of Superconformal Field Theories and Supergravity , 1997, hep-th/9711200.

[59]  Y. Verbin,et al.  Lower-dimensional gravity. , 1994, Physical review. D, Particles and fields.

[60]  Brill,et al.  Is the gravitational action additive? , 1994, Physical review. D, Particles and fields.

[61]  Brown,et al.  Quasilocal energy and conserved charges derived from the gravitational action. , 1992, Physical review. D, Particles and fields.

[62]  Marc Henneaux,et al.  Central charges in the canonical realization of asymptotic symmetries: An example from three dimensional gravity , 1986 .

[63]  P. González-Díaz On the wave function of the universe , 1985 .

[64]  C. Teitelboim Gravitation and hamiltonian structure in two spacetime dimensions , 1983 .

[65]  A. Polyakov Quantum Geometry of Bosonic Strings , 1981 .

[66]  R. Sorkin,et al.  Boundary terms in the action for the Regge calculus , 1981 .