Infinite arguments and semantics of dialectical proof procedures

We study the semantics of dialectical proof procedures. As dialectical proof procedures are in general sound but not complete wrt admissibility semantics, a natural question here is whether we could give a more precise semantical characterization of what they compute. Based on a new notion of infinite arguments representing (possibly infinite) loops, we introduce a stricter notion of admissibility, referred to as strict admissibility, and show that dialectical proof procedures are in general sound and complete wrt strict admissibility.

[1]  Zohar Manna,et al.  Proving termination with multiset orderings , 1979, CACM.

[2]  Bart Verheij,et al.  A Labeling Approach to the Computation of Credulous Acceptance in Argumentation , 2007, IJCAI.

[3]  Phan Minh Dung,et al.  On the Acceptability of Arguments and its Fundamental Role in Nonmonotonic Reasoning, Logic Programming and n-Person Games , 1995, Artif. Intell..

[4]  Guillermo Ricardo Simari,et al.  Defeasible logic programming: DeLP-servers, contextual queries, and explanations for answers , 2014, Argument Comput..

[5]  Christian Straßer,et al.  Logical argumentation by dynamic proof systems , 2019, Theor. Comput. Sci..

[6]  John L. Pollock,et al.  Defeasible Reasoning , 2020, Synthese Library.

[7]  Wayne D. Blizard,et al.  Multiset Theory , 1989, Notre Dame J. Formal Log..

[8]  Robert Craven,et al.  Argument graphs and assumption-based argumentation , 2016, Artif. Intell..

[9]  Paolo Mancarella,et al.  Computing ideal sceptical argumentation , 2007, Artif. Intell..

[10]  Sanjay Modgil,et al.  Proof Theories and Algorithms for Abstract Argumentation Frameworks , 2009, Argumentation in Artificial Intelligence.

[11]  Francesca Toni,et al.  A tutorial on assumption-based argumentation , 2014, Argument Comput..

[12]  Phan Minh Dung,et al.  Dialectic proof procedures for assumption-based, admissible argumentation , 2006, Artif. Intell..

[13]  Martin Caminada,et al.  On the evaluation of argumentation formalisms , 2007, Artif. Intell..

[14]  John Wylie Lloyd,et al.  Foundations of Logic Programming , 1987, Symbolic Computation.

[15]  Phan Minh Dung,et al.  A Unified Framework for Representation and Development of Dialectical Proof Procedures in Argumentation , 2009, IJCAI.

[16]  Trevor J. M. Bench-Capon,et al.  Two party immediate response disputes: Properties and efficiency , 2003, Artif. Intell..

[17]  Henry Prakken,et al.  A general account of argumentation with preferences , 2013, Artif. Intell..

[18]  Eugenia Ternovska,et al.  A logic of nonmonotone inductive definitions , 2008, TOCL.

[19]  Francesca Toni,et al.  A generalised framework for dispute derivations in assumption-based argumentation , 2013, Artif. Intell..

[20]  Robert A. Kowalski,et al.  Abduction Compared with Negation by Failure , 1989, ICLP.

[21]  Phan Minh Dung,et al.  An Argumentation-Theoretic Foundations for Logic Programming , 1995, J. Log. Program..

[22]  Claudette Cayrol,et al.  On Decision Problems Related to the Preferred Semantics for Argumentation Frameworks , 2003, J. Log. Comput..

[23]  Zohar Manna,et al.  The logical basis for computer programming , 1985 .

[24]  Michael J. Maher,et al.  Argumentation Semantics for Defeasible Logic , 2004, J. Log. Comput..

[25]  Brian A. Davey,et al.  An Introduction to Lattices and Order , 1989 .

[26]  Guillermo Ricardo Simari,et al.  Defeasible logic programming: an argumentative approach , 2003, Theory and Practice of Logic Programming.

[27]  Phan Minh Dung,et al.  Assumption-Based Argumentation , 2009, Argumentation in Artificial Intelligence.

[28]  Phan Minh Dung,et al.  An Abstract, Argumentation-Theoretic Approach to Default Reasoning , 1997, Artif. Intell..

[29]  Francesca Toni,et al.  Computing Arguments and Attacks in Assumption-Based Argumentation , 2007, IEEE Intelligent Systems.