Output attitude tracking for flexible spacecraft

In this work a class of nonlinear controllers has been derived for spacecraft with flexible appendages. The control aim is to track a given desired attitude. First, a static controller based on the measure of the whole state is determined. Then, a dynamic controller is designed; this controller does not use measures from the modal variables, and the variables measured are the parameters describing the attitude and the spacecraft angular velocity. Finally, it is shown that a relaxed version of the tracking problem can be solved when the only measured variable is the spacecraft angular velocity. Simulations show the performances of such control schemes.

[1]  P. Crouch,et al.  Spacecraft attitude control and stabilization: Applications of geometric control theory to rigid body models , 1984 .

[2]  John T. Wen,et al.  Attitude control without angular velocity measurement: a passivity approach , 1995, Proceedings of 1995 IEEE International Conference on Robotics and Automation.

[3]  J.S. Yuan,et al.  Closed-loop manipulator control using quaternion feedback , 1988, IEEE J. Robotics Autom..

[4]  S. Monaco,et al.  A nonlinear attitude control law for a satellite with flexible appendages , 1985, 1985 24th IEEE Conference on Decision and Control.

[5]  S. Di Gennaro,et al.  Adaptive robust tracking for flexible spacecraft in presence of disturbances , 1998 .

[6]  S. Sastry,et al.  Adaptive Control: Stability, Convergence and Robustness , 1989 .

[7]  A. G. Kelkar,et al.  Global stabilization of flexible multibody spacecraft using quaternion-based nonlinear control law , 1996 .

[8]  S. Di Gennaro Output feedback stabilization of flexible spacecraft , 1996 .

[9]  Salvatore Monaco,et al.  A Nonlinear Feedback Control Law for Attitude Control , 1986 .

[10]  J. Wen,et al.  Robust attitude stabilization of spacecraft using nonlinear quaternion feedback , 1995, IEEE Trans. Autom. Control..

[11]  J. Wen,et al.  The attitude control problem , 1991 .

[12]  B. Ickes A new method for performing digital control system attitude computations using quaternions , 1970 .

[13]  S. Di Gennaro,et al.  Nonlinear Digital Scheme for Attitude Tracking , 1999 .

[14]  Suresh M. Joshi,et al.  Control of Large Flexible Space Structures , 1989 .

[15]  Dirk Aeyels,et al.  Stabilization by smooth feedback of the angular velocity of a rigid body , 1985 .

[16]  Ruth F. Curtain (C, A, B)-PAIRS IN INFINITE DIMENSIONS , 1984 .

[17]  S. Di Gennaro Adaptive robust stabilization of rigid spacecraft in presence of disturbances , 1995 .

[18]  Michel Verhaegen,et al.  Proceedings of the 37th IEEE Conference on Decision and Control , 1998 .

[19]  James R. Wertz,et al.  Spacecraft attitude determination and control , 1978 .

[20]  S. Di Gennaro Output attitude control of flexible spacecraft from quaternion measures: a passivity approach , 1998 .

[21]  S. Monaco,et al.  Variable structure control of globally feedback-decoupled deformable vehicle meneuvers , 1987, 26th IEEE Conference on Decision and Control.

[22]  S. Gennaro,et al.  Active Vibration Suppression in Flexible Spacecraft Attitude Tracking , 1998 .

[23]  R. Curtain,et al.  Functional Analysis in Modern Applied Mathematics , 1977 .

[24]  T. Dwyer Exact nonlinear control of large angle rotational maneuvers , 1984 .

[25]  John L. Junkins Feedback Control Of Space Structures: A Liapunov Approach , 1990 .

[26]  Panagiotis Tsiotras A passivity approach to attitude stabilization using nonredundant kinematic parameterizations , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.