Nonlinear least-square solution to flat-top pattern synthesis using arbitrary linear array

This paper presents a new approach for synthesizing flat-top patterns, based on the least-square error criterion. The cost function is formulated according to the amplitude approximation error without phase constraint. The optimal array weight is obtained by using the Levenberg-Marquardt nonlinear optimization algorithm. Simulations are performed to compare the proposed approach with the Woodward-Lawson method and two recent methods using minimax and adaptive array techniques, respectively. The results indicate that the approach is effective in sidelobe control and synthesizing prespecified patterns for arbitrary linear arrays.

[1]  M. Er,et al.  A flexible array synthesis method using quadratic programming , 1993 .

[2]  M. Kajala,et al.  Broadband beamforming optimization for speech enhancement in noisy environments , 1999, Proceedings of the 1999 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics. WASPAA'99 (Cat. No.99TH8452).

[3]  Fan Wang,et al.  Optimal array pattern synthesis using semidefinite programming , 2001, 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.01CH37221).

[4]  M. A. Ingram,et al.  Pattern Synthesis for Arbitrary Arrays Using an Adaptive Array Method , 1999 .

[5]  Marc Moonen,et al.  Design of far-field and near-field broadband beamformers using eigenfilters , 2003, Signal Process..

[6]  J. McClellan,et al.  Chebyshev Approximation for Nonrecursive Digital Filters with Linear Phase , 1972 .

[7]  D. W. Tufts,et al.  Interactive minimax design of linear-phase nonrecursive digital filters subject to upper and lower function constraints , 1972 .

[8]  T. Parks,et al.  A program for the design of linear phase finite impulse response digital filters , 1972 .

[9]  Harry L. Van Trees,et al.  Optimum Array Processing , 2002 .

[10]  Stephen P. Boyd,et al.  Antenna array pattern synthesis via convex optimization , 1997, IEEE Trans. Signal Process..

[11]  P. Woodward,et al.  The Theoretical Precision with which an Arbitrary Radiation-Pattern may be Obtained from a Source of Finite Size , 1948 .

[12]  R.T. Compton,et al.  A numerical pattern synthesis algorithm for arrays , 1990, International Symposium on Antennas and Propagation Society, Merging Technologies for the 90's.

[13]  Thomas F. Coleman,et al.  Optimization Toolbox User's Guide , 1998 .

[14]  James T. Lewis,et al.  Beam pattern synthesis for line arrays subject to upper and lower constraining bounds , 1975 .