Basic principles for understanding evolutionary algorithms

Evolutionary algorithms are often successfully applied to hard optimization problems. However, besides rules of thumb and experience, trial and error is still the leading design technique for evolutionary algorithms. A profound theoretical foundation guiding those applications is still missing. This article outlines a networked understanding of evolutionary algorithms. As a first step towards that goal, it reviews and interrelates major theoretical results and working principles in order to give an extensive insight into the internal processing of evolutionary algorithms. This not only helps to understand success and failure of evolutionary algorithms in applications but, in addition, could lead to a theory-guided design process enrichening and relieving today's heuristic techniques.

[1]  Prügel-Bennett,et al.  Analysis of genetic algorithms using statistical mechanics. , 1994, Physical review letters.

[2]  Hans-Georg Beyer,et al.  Toward a Theory of Evolution Strategies: On the Benefits of Sex the (/, ) Theory , 1995, Evolutionary Computation.

[3]  William M. Spears,et al.  Simple Subpopulation Schemes , 1998 .

[4]  Hans-Paul Schwefel,et al.  Evolution and Optimum Seeking: The Sixth Generation , 1993 .

[5]  Lawrence J. Fogel,et al.  Intelligence Through Simulated Evolution: Forty Years of Evolutionary Programming , 1999 .

[6]  Hans-Paul Schwefel,et al.  Evolution and optimum seeking , 1995, Sixth-generation computer technology series.

[7]  David B. Fogel,et al.  An Overview of Evolutionary Programming , 1999 .

[8]  Günter Rudolph,et al.  Finite Markov Chain Results in Evolutionary Computation: A Tour d'Horizon , 1998, Fundam. Informaticae.

[9]  David E. Goldberg,et al.  Zen and the Art of Genetic Algorithms , 1989, ICGA.

[10]  Kalyanmoy Deb,et al.  On the Desired Behaviors of Self-Adaptive Evolutionary Algorithms , 2000, PPSN.

[11]  T. M. English Some information theoretic results on evolutionary optimization , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[12]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[13]  L. D. Whitley,et al.  The No Free Lunch and problem description length , 2001 .

[14]  A. E. Eiben,et al.  On Evolutionary Exploration and Exploitation , 1998, Fundam. Informaticae.

[15]  L. Darrell Whitley,et al.  Search, Binary Representations and Counting Optima , 1999 .

[16]  Karsten Weicker,et al.  Towards Qualitative Models of Interactions in Evolutionary Algorithms , 2002, Foundations of Genetic Algorithms.

[17]  Christopher R. Stephens,et al.  Schemata as Building Blocks: Does Size Matter? , 2000, FOGA.

[18]  Riccardo Poli Recursive Conditional Schema Theorem, Convergence and Population Sizing in Genetic Algorithms , 2000, FOGA.

[19]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[20]  Ingo Rechenberg,et al.  Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .

[21]  Karsten Weicker,et al.  Locality vs. Randomness - Dependence of Operator Quality on the Search State , 1998, Foundations of Genetic Algorithms.

[22]  RudolphGünter Finite Markov chain results in evolutionary computation , 1998 .

[23]  Thomas Bäck,et al.  Generalized Convergence Models for Tournament- and (mu, lambda)-Selection , 1995, ICGA.

[24]  Kalyanmoy Deb,et al.  Understanding Interactions among Genetic Algorithm Parameters , 1998, FOGA.

[25]  Patrick D. Surry,et al.  Fitness Variance of Formae and Performance Prediction , 1994, FOGA.

[26]  Tim Jones Evolutionary Algorithms, Fitness Landscapes and Search , 1995 .

[27]  Heinz Mühlenbein,et al.  Predictive Models for the Breeder Genetic Algorithm I. Continuous Parameter Optimization , 1993, Evolutionary Computation.

[28]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[29]  Thomas Bäck,et al.  Evolutionary computation: Toward a new philosophy of machine intelligence , 1997, Complex..

[30]  Lee Altenberg,et al.  The Schema Theorem and Price's Theorem , 1994, FOGA.

[31]  David B. Fogel,et al.  Evolutionary Computation: Towards a New Philosophy of Machine Intelligence , 1995 .

[32]  Kenneth de Jong,et al.  Generation gap methods , 2018, Evolutionary Computation 1.

[33]  XI FachbereichInformatik Finite Markov Chain Results in Evolutionary Computation: a Tour D'horizon , 1998 .

[34]  Martin Zwick,et al.  Dynamics of Diversity in an Evolving Population , 1992, PPSN.

[35]  H. Beyer An alternative explanation for the manner in which genetic algorithms operate. , 1997, Bio Systems.

[36]  Riccardo Poli,et al.  Exact Schema Theorems for GP with One-Point and Standard Crossover Operating on Linear Structures and Their Application to the Study of the Evolution of Size , 2001, EuroGP.

[37]  John H. Holland,et al.  A new kind of turnpike theorem , 1969 .

[38]  Jim Smith,et al.  Replacement Strategies in Steady State Genetic Algorithms: Static Environments , 1998, FOGA.

[39]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[40]  Nicholas J. Radcliffe,et al.  Equivalence Class Analysis of Genetic Algorithms , 1991, Complex Syst..

[41]  J. W. Atmar,et al.  Comparing genetic operators with gaussian mutations in simulated evolutionary processes using linear systems , 1990, Biological Cybernetics.

[42]  Joseph C. Culberson,et al.  On the Futility of Blind Search: An Algorithmic View of No Free Lunch , 1998, Evolutionary Computation.

[43]  David E. Goldberg,et al.  Genetic Algorithms with Sharing for Multimodalfunction Optimization , 1987, ICGA.

[44]  Lawrence J. Fogel,et al.  Artificial Intelligence through Simulated Evolution , 1966 .

[45]  Lothar Thiele,et al.  A Comparison of Selection Schemes Used in Evolutionary Algorithms , 1996, Evolutionary Computation.

[46]  Jeffrey Horn Resource-Based Fitness Sharing , 2002, PPSN.