Modern network interdiction problems and algorithms

A network interdiction problem usually involves two players who compete in a min‐max or max‐min game. One player, the network owner, tries to optimize its objective over the network, for example, as measured by a shortest path, maximum flow, or minimum cost flow. The opposing player, called the interdictor, alters the owner’s network to maximally impair the owner’s objective (e.g., by destroying arcs that maximize the owner’s shortest path). This chapter

[1]  Arkadi Nemirovski,et al.  Robust Truss Topology Design via Semidefinite Programming , 1997, SIAM J. Optim..

[2]  Dimitris Bertsimas,et al.  A Robust Optimization Approach to Inventory Theory , 2006, Oper. Res..

[3]  Jeff T. Linderoth,et al.  Reformulation and sampling to solve a stochastic network interdiction problem , 2008 .

[4]  Arkadi Nemirovski,et al.  Robust Convex Optimization , 1998, Math. Oper. Res..

[5]  Churlzu Lim,et al.  Algorithms for Network Interdiction and Fortification Games , 2008 .

[6]  Melvyn Sim,et al.  The Price of Robustness , 2004, Oper. Res..

[7]  J. Cole Smith,et al.  Introduction To Robust Optimization , 2011 .

[8]  Ravindra K. Ahuja,et al.  Network Flows: Theory, Algorithms, and Applications , 1993 .

[9]  Hanif D. Sherali,et al.  Enhanced Model Representations for an Intra-Ring Synchronous Optical Network Design Problem Allowing Demand Splitting , 2000, INFORMS J. Comput..

[10]  Jonathan Cole Smith,et al.  A stochastic integer programming approach to solving a synchronous optical network ring design problem , 2004, Networks.

[11]  J. C. Smith,et al.  Models and algorithms for the design of survivable multicommodity flow networks with general failure scenarios , 2008 .

[12]  J. M. Arroyo,et al.  A Genetic Algorithm Approach for the Analysis of Electric Grid Interdiction with Line Switching , 2009, 2009 15th International Conference on Intelligent System Applications to Power Systems.

[13]  Frank Plastria,et al.  Static competitive facility location: An overview of optimisation approaches , 2001, Eur. J. Oper. Res..

[14]  David P. Morton,et al.  A Stochastic Program for Interdicting Smuggled Nuclear Material , 2003 .

[15]  H. Hotelling Stability in Competition , 1929 .

[16]  D. Bertsimas,et al.  Robust and Data-Driven Optimization: Modern Decision-Making Under Uncertainty , 2006 .

[17]  Jonathan Cole Smith,et al.  Survivable network design under optimal and heuristic interdiction scenarios , 2007, J. Glob. Optim..

[18]  Gerald G. Brown,et al.  Defending Critical Infrastructure , 2006, Interfaces.

[19]  Jacques-François Thisse,et al.  On hotelling's "Stability in competition" , 1979 .

[20]  Arkadi Nemirovski,et al.  Robust optimization – methodology and applications , 2002, Math. Program..

[21]  Richard L. Church,et al.  A bilevel mixed-integer program for critical infrastructure protection planning , 2008, Comput. Oper. Res..

[22]  Richard L. Church,et al.  Identifying Critical Infrastructure: The Median and Covering Facility Interdiction Problems , 2004 .

[23]  M. Stoer,et al.  A polyhedral approach to multicommodity survivable network design , 1994 .

[24]  Arkadi Nemirovski,et al.  Robust solutions of uncertain linear programs , 1999, Oper. Res. Lett..

[25]  Matthew D. Bailey,et al.  Shortest path network interdiction with asymmetric information , 2008 .

[26]  Tsong-Ho Wu,et al.  Fiber Network Service Survivability , 1992 .

[27]  Richard L. Church,et al.  Protecting Critical Assets: The r-interdiction median problem with fortification , 2007 .

[28]  David P. Morton,et al.  Models for nuclear smuggling interdiction , 2007 .

[29]  Alper Atamtürk,et al.  Two-Stage Robust Network Flow and Design Under Demand Uncertainty , 2007, Oper. Res..

[30]  Allen L. Soyster,et al.  Technical Note - Convex Programming with Set-Inclusive Constraints and Applications to Inexact Linear Programming , 1973, Oper. Res..

[31]  Heinrich von Stackelberg,et al.  Stackelberg (Heinrich von) - The Theory of the Market Economy, translated from the German and with an introduction by Alan T. PEACOCK. , 1953 .

[32]  H. Sherali,et al.  A Branch-and-Cut Algorithm for Solving an Intraring Synchronous Optical Network Design Problem , 2000 .

[33]  Shawn D. Cartwright SUPPLY CHAIN INTERDICTION and CORPORATE WARFARE , 2000 .

[34]  Claudio M. Rocco Sanseverino,et al.  A bi-objective approach for shortest-path network interdiction , 2010, Comput. Ind. Eng..

[35]  Laurence A. Wolsey,et al.  Optimal Placement of Add/Drop Multiplexers: Heuristic and Exact Algorithms , 1998, Oper. Res..

[36]  W. J. Salmon,et al.  Pepsi-Cola (A) , 1978 .

[37]  Laurent El Ghaoui,et al.  Robust Solutions to Least-Squares Problems with Uncertain Data , 1997, SIAM J. Matrix Anal. Appl..

[38]  J. Salmeron,et al.  Worst-Case Interdiction Analysis of Large-Scale Electric Power Grids , 2009, IEEE Transactions on Power Systems.

[39]  Louis Anthony Cox,et al.  Wiley encyclopedia of operations research and management science , 2011 .

[40]  A Gerodimos,et al.  Robust Discrete Optimization and its Applications , 1996, J. Oper. Res. Soc..

[41]  Mark S. Daskin,et al.  Planning for Disruptions in Supply Chain Networks , 2006 .

[42]  T.-H. Wu,et al.  Feasibility study of a high-speed SONET self-healing ring architecture in future interoffice networks , 1990, IEEE Communications Magazine.

[43]  Philip Kotler,et al.  Marketing Warfare in the 1980s , 1981 .

[44]  J. Salmeron,et al.  Analysis of electric grid security under terrorist threat , 2004, IEEE Transactions on Power Systems.

[45]  Arkadi Nemirovski,et al.  Robust solutions of Linear Programming problems contaminated with uncertain data , 2000, Math. Program..

[46]  Martin Grötschel,et al.  Polyhedral and Computational Investigations for Designing Communication Networks with High Survivability Requirements , 1995, Oper. Res..

[47]  Martin Grötschel,et al.  Integer Polyhedra Arising from Certain Network Design Problems with Connectivity Constraints , 1990, SIAM J. Discret. Math..

[48]  Laurence A. Wolsey,et al.  Optimal placement of add /drop multiplexers static and dynamic models , 1998, Eur. J. Oper. Res..

[49]  M. Parlar Game theoretic analysis of the substitutable product inventory problem with random demands , 1988 .

[50]  Joseph Geunes,et al.  Optimizing exclusivity agreements in a three-stage procurement game , 2011 .

[51]  Gilbert Laporte,et al.  Competitive Location Models: A Framework and Bibliography , 1993, Transp. Sci..

[52]  D. Morton,et al.  Minimizing a stochastic maximum-reliability path , 2008 .

[53]  Eli V. Olinick,et al.  SONET/SDH Ring Assignment with Capacity Constraints , 2003, Discret. Appl. Math..

[54]  Geir Dahl,et al.  A Cutting Plane Algorithm for Multicommodity Survivable Network Design Problems , 1998, INFORMS J. Comput..

[55]  Gerald G. Brown,et al.  Analyzing the Vulnerability of Critical Infrastructure to Attack and Planning Defenses , 2005 .

[56]  J. Cole Smith,et al.  Basic Interdiction Models , 2010 .

[57]  Churlzu Lim,et al.  New product introduction against a predator: A bilevel mixed‐integer programming approach , 2009 .

[58]  Dorit S. Hochbaum,et al.  The SONET edge-partition problem , 2003, Networks.

[59]  Laurent El Ghaoui,et al.  Robust Solutions to Uncertain Semidefinite Programs , 1998, SIAM J. Optim..

[60]  David P. Morton,et al.  Stochastic Network Interdiction , 1998, Oper. Res..

[61]  Johannes O. Royset,et al.  Solving the Bi-Objective Maximum-Flow Network-Interdiction Problem , 2007, INFORMS J. Comput..

[62]  Hanif D. Sherali,et al.  Linear Programming and Network Flows , 1977 .

[63]  Peter Kall,et al.  Stochastic Programming , 1995 .

[64]  John R. Birge,et al.  Introduction to Stochastic Programming , 1997 .