Measurement of the top quark mass in the dileptonic ttbar decay channel using the mass observables Mbl, MT2, and Mblv in pp collisions at sqrt(s) = 8 TeV

A measurement of the top quark mass (Mt) in the dileptonic tt decay channel is performed using data from proton-proton collisions at a center-of-mass energy of 8 TeV. The data was recorded by the CMS experiment at the LHC and corresponding to an integrated luminosity of 19.7± 0.5 fb−1. Events are selected with two oppositely charged leptons (` = e, μ) and two jets identified as originating from b quarks. The analysis is based on three kinematic observables whose distributions are sensitive to the value of Mt. An invariant mass observable, Mb`, and a ‘stransverse mass’ observable, MT2, are employed in a simultaneous fit to determine the value of Mt and an overall jet energy scale factor (JSF). A complementary approach is used to construct an invariant mass observable, Mb`ν, that is combined with MT2 to measure Mt. The shapes of the observables, along with their evolutions in Mt and JSF, are modeled by a nonparametric Gaussian process regression technique. The sensitivity of the observables to the value of Mt is investigated using a Fisher information density method. The top quark mass is measured to be 172.22± 0.18 (stat) +0.89 −0.93 (syst) GeV. Submitted to Physical Review D c © 2017 CERN for the benefit of the CMS Collaboration. CC-BY-3.0 license ∗See Appendix C for the list of collaboration members ar X iv :s ub m it/ 18 68 61 8 [ he pex ] 2 0 A pr 2 01 7

[1]  Khachatryan,et al.  Jet energy scale and resolution in the CMS experiment in pp collisions at 8 TeV , 2016, 1607.03663.

[2]  R. Chierici,et al.  Measurement of the top quark mass using proton-proton data at √s=7 and 8 TeV , 2016 .

[3]  Andrea Benaglia,et al.  Measurement of the differential cross section for top quark pair production in pp collisions at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin} , 2015, The European Physical Journal. C, Particles and Fields.

[4]  Khachatryan,et al.  Performance of the CMS missing transverse momentum reconstruction in pp data at √s = 8 TeV , 2014, 1411.0511.

[5]  Khachatryan,et al.  Performance of electron reconstruction and selection with the CMS detector in proton-proton collisions at √s=8 TeV , 2015 .

[6]  M. Baak,et al.  The global electroweak fit at NNLO and prospects for the LHC and ILC , 2014, 1407.3792.

[7]  R. Frederix,et al.  The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations , 2014, 1405.0301.

[8]  D. Collaborations,et al.  First combination of Tevatron and LHC measurements of the top-quark mass , 2014, 1403.4427.

[9]  A. Mitov,et al.  Total top-quark pair-production cross section at hadron colliders through O(αS(4)). , 2013, Physical review letters.

[10]  R. Frederix,et al.  Automatic spin-entangled decays of heavy resonances in Monte Carlo simulations , 2012, 1212.3460.

[11]  C. Collaboration,et al.  Identification of b-quark jets with the CMS experiment , 2012, 1211.4462.

[12]  P. D. Luckey,et al.  Performance of CMS muon reconstruction in pp collision events at √s = 7 TeV , 2012 .

[13]  G. Degrassi,et al.  Higgs mass and vacuum stability in the Standard Model at NNLO , 2012, 1205.6497.

[14]  N. Kidonakis Differential and total cross sections for top pair and single top production , 2012, 1205.3453.

[15]  M. Cacciari,et al.  FastJet user manual , 2011, 1111.6097.

[16]  M. C. Espirito Santo,et al.  A study of the b-quark fragmentation function with the DELPHI detector at LEP I and an averaged distribution obtained at the Z Pole , 2011, 1102.4748.

[17]  N. Kidonakis Next-to-next-to-leading soft-gluon corrections for the top quark cross section and transverse momentum distribution , 2010, 1009.4935.

[18]  E. Re Single-top Wt-channel production matched with parton showers using the POWHEG method , 2010, 1009.2450.

[19]  J. Campbell,et al.  MCFM for the Tevatron and the LHC , 2010, 1007.3492.

[20]  J. Huston,et al.  New parton distributions for collider physics , 2010, 1007.2241.

[21]  P. Skands Tuning Monte Carlo Generators: The Perugia Tunes , 2010, 1005.3457.

[22]  A. Barr,et al.  A review of the mass measurement techniques proposed for the Large Hadron Collider , 2010, 1004.2732.

[23]  E. Re,et al.  A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX , 2010, 1002.2581.

[24]  E. Re,et al.  NLO single-top production matched with shower in POWHEG: s- and t-channel contributions , 2009, 0907.4076.

[25]  K. Matchev,et al.  Using subsystem MT2 for complete mass determinations in decay chains with missing energy at hadron colliders , 2008, 0810.5576.

[26]  Chan Beom Park,et al.  M-T2-assisted on-shell reconstruction of missing momenta and its application to spin measurement at the LHC , 2008, 0810.4853.

[27]  João Paulo Teixeira,et al.  The CMS experiment at the CERN LHC , 2008 .

[28]  A. Dasgupta Asymptotic Theory of Statistics and Probability , 2008 .

[29]  M. Gigg,et al.  Herwig++ physics and manual , 2008, 0803.0883.

[30]  M. Cacciari,et al.  The anti-$k_t$ jet clustering algorithm , 2008, 0802.1189.

[31]  P. Nason,et al.  Matching NLO QCD computations with Parton Shower simulations: the POWHEG method , 2007, 0709.2092.

[32]  Radford M. Neal Pattern Recognition and Machine Learning , 2007, Technometrics.

[33]  J. Varela,et al.  The CMS trigger system , 2004, 1609.02366.

[34]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[35]  J. Huston,et al.  New generation of parton distributions with uncertainties from global QCD analysis , 2002, hep-ph/0201195.

[36]  S. Mrenna,et al.  Pythia 6.3 physics and manual , 2003, hep-ph/0308153.

[37]  P. G. Verdini,et al.  Study of the fragmentation of b quarks into B mesons at the Z peak , 2014 .

[38]  C. Lester,et al.  Measuring masses of semi-invisibly decaying particles pair produced at hadron colliders , 1999 .

[39]  Hayes,et al.  Review of Particle Physics. , 1996, Physical review. D, Particles and fields.

[40]  Claudia Biermann,et al.  Mathematical Methods Of Statistics , 2016 .

[41]  M. Kenward,et al.  An Introduction to the Bootstrap , 2007 .

[42]  A. Dell'Acqua,et al.  Geant4 - A simulation toolkit , 2003 .

[43]  Particle – Flow Event Reconstruction in CMS and Performance for Jets , Taus , 2022 .