Intent-Aware Semantic Query Annotation

Query understanding is a challenging task primarily due to the inherent ambiguity of natural language. A common strategy for improving the understanding of natural language queries is to annotate them with semantic information mined from a knowledge base. Nevertheless, queries with different intents may arguably benefit from specialized annotation strategies. For instance, some queries could be effectively annotated with a single entity or an entity attribute, others could be better represented by a list of entities of a single type or by entities of multiple distinct types, and others may be simply ambiguous. In this paper, we propose a framework for learning semantic query annotations suitable to the target intent of each individual query. Thorough experiments on a publicly available benchmark show that our proposed approach can significantly improve state-of-the-art intent-agnostic approaches based on Markov random fields and learning to rank. Our results further demonstrate the consistent effectiveness of our approach for queries of various target intents, lengths, and difficulty levels, as well as its robustness to noise in intent detection.

[1]  Björn Buchhold,et al.  Semantic Search on Text and Knowledge Bases , 2016, Found. Trends Inf. Retr..

[2]  Tie-Yan Liu,et al.  Learning to Rank for Information Retrieval , 2011 .

[3]  Yi Chang,et al.  Yahoo! Learning to Rank Challenge Overview , 2010, Yahoo! Learning to Rank Challenge.

[4]  Idan Szpektor,et al.  Identifying Web Queries with Question Intent , 2016, WWW.

[5]  Krisztian Balog,et al.  A test collection for entity search in DBpedia , 2013, SIGIR.

[6]  Ido Guy,et al.  Searching by Talking: Analysis of Voice Queries on Mobile Web Search , 2016, SIGIR.

[7]  Omar Alonso,et al.  Exploiting Semantic Annotations in Information Retrieval , 2008, ECIR.

[8]  Stephen E. Robertson,et al.  Okapi at TREC-3 , 1994, TREC.

[9]  In-Ho Kang,et al.  Query type classification for web document retrieval , 2003, SIGIR.

[10]  Andrei Broder,et al.  A taxonomy of web search , 2002, SIGF.

[11]  Stephen E. Robertson,et al.  Okapi at TREC-4 , 1995, TREC.

[12]  Eugene Agichtein,et al.  Improving entity search over linked data by modeling latent semantics , 2013, CIKM.

[13]  Mounia Lalmas,et al.  Overview of the INEX 2007 Entity Ranking Track , 2008, INEX.

[14]  Paul Thomas,et al.  Overview of the TREC 2009 Entity Track , 2009, TREC.

[15]  Krisztian Balog,et al.  On the Modeling of Entities for Ad-Hoc Entity Search in the Web of Data , 2012, ECIR.

[16]  Elad Yom-Tov,et al.  Learning to estimate query difficulty: including applications to missing content detection and distributed information retrieval , 2005, SIGIR '05.

[17]  W. Bruce Croft,et al.  A Markov random field model for term dependencies , 2005, SIGIR '05.

[18]  Roi Blanco,et al.  Entity Search Track submission by Yahoo! Research Barcelona , 2010 .

[19]  Daniel Gayo-Avello,et al.  Survey and evaluation of query intent detection methods , 2009, WSCD '09.

[20]  Alexander Kotov,et al.  Parameterized Fielded Term Dependence Models for Ad-hoc Entity Retrieval from Knowledge Graph , 2016, SIGIR.

[21]  Najafi Azadeh,et al.  REAL LIFE, REAL USERS AND REAL NEEDS: A STUDY AND ANALYSIS OF USER QUERIES ON THE WEB , 2008 .

[22]  Alexander Kotov,et al.  Fielded Sequential Dependence Model for Ad-Hoc Entity Retrieval in the Web of Data , 2015, SIGIR.

[23]  Craig MacDonald,et al.  Selectively diversifying web search results , 2010, CIKM.

[24]  Craig MacDonald,et al.  Intent-aware search result diversification , 2011, SIGIR.

[25]  Daniel Schwabe,et al.  A hybrid approach for searching in the semantic web , 2004, WWW '04.

[26]  Roi Blanco,et al.  Federated Entity Search Using On-the-Fly Consolidation , 2013, International Semantic Web Conference.

[27]  Craig MacDonald,et al.  Learning to Select a Ranking Function , 2010, ECIR.

[28]  Amanda Spink,et al.  Real life, real users, and real needs: a study and analysis of user queries on the web , 2000, Inf. Process. Manag..

[29]  Craig MacDonald,et al.  Voting for related entities , 2010, RIAO.

[30]  Gerhard Weikum,et al.  Language-model-based ranking for queries on RDF-graphs , 2009, CIKM.

[31]  Wei Chu,et al.  Learning to Recommend Related Entities to Search Users , 2015, WSDM.

[32]  Harry Shum,et al.  Query Dependent Ranking Using K-nearest Neighbor * , 2022 .

[33]  Stefan Dietze,et al.  Improving Entity Retrieval on Structured Data , 2015, SEMWEB.

[34]  M. de Rijke,et al.  Example Based Entity Search in the Web of Data , 2013, ECIR.

[35]  David Hawking,et al.  Overview of the TREC 2004 Web Track , 2004, TREC.

[36]  Tie-Yan Liu,et al.  Learning to rank for information retrieval , 2009, SIGIR.

[37]  Roi Blanco,et al.  Keyword search over RDF graphs , 2011, CIKM '11.

[38]  Omar Alonso,et al.  Exploiting semantic annotations in information retrieval: ESAIR '08 , 2008, SIGF.

[39]  M. de Rijke,et al.  Ranking related entities: components and analyses , 2010, CIKM.

[40]  Roi Blanco,et al.  Effective and Efficient Entity Search in RDF Data , 2011, SEMWEB.

[41]  Salvatore Orlando,et al.  Speeding up Document Ranking with Rank-based Features , 2015, SIGIR.

[42]  James P. Callan,et al.  Combining document representations for known-item search , 2003, SIGIR.

[43]  Jane Greenberg,et al.  Using BM25F for semantic search , 2010, SEMSEARCH '10.

[44]  Gianluca Demartini,et al.  Combining inverted indices and structured search for ad-hoc object retrieval , 2012, SIGIR '12.

[45]  Peter Mika,et al.  Ad-hoc object retrieval in the web of data , 2010, WWW '10.

[46]  Jianfeng Gao,et al.  Ranking, Boosting, and Model Adaptation , 2008 .

[47]  Daniel E. Rose,et al.  Understanding user goals in web search , 2004, WWW '04.