Single-molecule FRET reveals the native-state dynamics of the IκBα ankyrin repeat domain.

[1]  E. Rhoades,et al.  Identification of an aggregation-prone structure of tau. , 2012, Journal of the American Chemical Society.

[2]  Alessandro Borgia,et al.  Polymer scaling laws of unfolded and intrinsically disordered proteins quantified with single-molecule spectroscopy , 2012, Proceedings of the National Academy of Sciences.

[3]  Peer Bork,et al.  SMART 7: recent updates to the protein domain annotation resource , 2011, Nucleic Acids Res..

[4]  Monika Fuxreiter,et al.  Fuzzy complexes: a more stochastic view of protein function. , 2012, Advances in experimental medicine and biology.

[5]  Edward A Lemke,et al.  Single molecule study of the intrinsically disordered FG-repeat nucleoporin 153. , 2011, Biophysical journal.

[6]  Shifeng Xiao,et al.  Effect of Src Kinase Phosphorylation on Disordered C-terminal Domain of N-Methyl-d-aspartic Acid (NMDA) Receptor Subunit GluN2B Protein* , 2011, The Journal of Biological Chemistry.

[7]  E. Komives,et al.  Visualization of the nanospring dynamics of the IκBα ankyrin repeat domain in real time , 2011, Proceedings of the National Academy of Sciences.

[8]  Elizabeth A Komives,et al.  Folding kinetics of the cooperatively folded subdomain of the IκBα ankyrin repeat domain. , 2011, Journal of molecular biology.

[9]  K. Weninger,et al.  Beyond the random coil: stochastic conformational switching in intrinsically disordered proteins. , 2011, Structure.

[10]  Adam J. Trexler,et al.  Single molecule characterization of α-synuclein in aggregation-prone states. , 2010, Biophysical journal.

[11]  L. Reymond,et al.  Charge interactions can dominate the dimensions of intrinsically disordered proteins , 2010, Proceedings of the National Academy of Sciences.

[12]  M. Tsai,et al.  Contributions of conserved TPLH tetrapeptides to the conformational stability of ankyrin repeat proteins. , 2010, Journal of molecular biology.

[13]  Elizabeth A Komives,et al.  Molecular mechanisms of system control of NF-kappaB signaling by IkappaBalpha. , 2010, Biochemistry.

[14]  Elizabeth A. Komives,et al.  Kinetic enhancement of NF-κB·DNA dissociation by IκBα , 2009, Proceedings of the National Academy of Sciences.

[15]  J. Mccammon,et al.  Functional Dynamics of the Folded Ankyrin Repeats of IκBα Revealed by Nuclear Magnetic Resonance† , 2009, Biochemistry.

[16]  E. Lemke,et al.  Interplay of α-synuclein binding and conformational switching probed by single-molecule fluorescence , 2009, Proceedings of the National Academy of Sciences.

[17]  K. Misra Single - molecule fluorescence resonance energy transfer: A diagnostic tool in gene therapy , 2009 .

[18]  H. Dyson,et al.  Transfer of flexibility between ankyrin repeats in IkappaB* upon formation of the NF-kappaB complex. , 2008, Journal of molecular biology.

[19]  Elizabeth A Komives,et al.  Pre-folding IkappaBalpha alters control of NF-kappaB signaling. , 2008, Journal of molecular biology.

[20]  Rahul Roy,et al.  A practical guide to single-molecule FRET , 2008, Nature Methods.

[21]  Elizabeth A Komives,et al.  Folding landscapes of ankyrin repeat proteins: experiments meet theory. , 2008, Current opinion in structural biology.

[22]  Andre Levchenko,et al.  A homeostatic model of IκB metabolism to control constitutive NF-κB activity , 2007, Molecular systems biology.

[23]  Peter G. Wolynes,et al.  Stabilizing IκBα by “Consensus” Design , 2007 .

[24]  Peter G Wolynes,et al.  Stabilizing IkappaBalpha by "consensus" design. , 2007, Journal of molecular biology.

[25]  Elizabeth A. Komives,et al.  Regions of IκBα that are critical for its inhibition of NF-κB·DNA interaction fold upon binding to NF-κB , 2006, Proceedings of the National Academy of Sciences.

[26]  M. Tsai,et al.  Ankyrin repeat: a unique motif mediating protein-protein interactions. , 2006, Biochemistry.

[27]  E. Komives,et al.  Thermodynamics Reveal that Helix Four in the NLS of NF-κB p65 Anchors IκBα, Forming a Very Stable Complex , 2006 .

[28]  E. Komives,et al.  Thermodynamics reveal that helix four in the NLS of NF-kappaB p65 anchors IkappaBalpha, forming a very stable complex. , 2006, Journal of molecular biology.

[29]  Elizabeth A Komives,et al.  Regions of IkappaBalpha that are critical for its inhibition of NF-kappaB.DNA interaction fold upon binding to NF-kappaB. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[30]  E. Komives,et al.  Biophysical characterization of the free IκBα ankyrin repeat domain in solution , 2004 .

[31]  Bharat B. Aggarwal,et al.  Nuclear factor-κB: its role in health and disease , 2004, Journal of Molecular Medicine.

[32]  Daniel C. Desrosiers,et al.  The ankyrin repeat as molecular architecture for protein recognition , 2004, Protein science : a publication of the Protein Society.

[33]  E. Komives,et al.  Biophysical characterization of the free IkappaBalpha ankyrin repeat domain in solution. , 2004, Protein science : a publication of the Protein Society.

[34]  B. Aggarwal,et al.  Nuclear factor-kappaB: its role in health and disease. , 2004, Journal of molecular medicine.

[35]  Andreas Plückthun,et al.  Designing repeat proteins: well-expressed, soluble and stable proteins from combinatorial libraries of consensus ankyrin repeat proteins. , 2003, Journal of molecular biology.

[36]  A. Plückthun,et al.  Designed to be stable: Crystal structure of a consensus ankyrin repeat protein , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[37]  Z. Peng,et al.  Consensus-derived structural determinants of the ankyrin repeat motif , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[38]  A. Hoffmann,et al.  The I (cid:1) B –NF-(cid:1) B Signaling Module: Temporal Control and Selective Gene Activation , 2022 .

[39]  A. Hoffmann,et al.  The IkappaB-NF-kappaB signaling module: temporal control and selective gene activation. , 2002, Science.

[40]  T. Ha,et al.  Single-molecule fluorescence resonance energy transfer. , 2001, Methods.

[41]  G. Ghosh,et al.  IKAPPABALPHA/NF-KAPPAB COMPLEX , 1999 .

[42]  G. Ghosh,et al.  Structure and mechanism in NF-kappa B/I kappa B signaling. , 1999, Cold Spring Harbor symposia on quantitative biology.

[43]  G. Ghosh,et al.  The Crystal Structure of the IκBα/NF-κB Complex Reveals Mechanisms of NF-κB Inactivation , 1998, Cell.

[44]  S. Harrison,et al.  Structure of an IκBα/NF-κB Complex , 1998, Cell.

[45]  J Schultz,et al.  SMART, a simple modular architecture research tool: identification of signaling domains. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[46]  S. Harrison,et al.  Structure of an IkappaBalpha/NF-kappaB complex. , 1998, Cell.

[47]  G. Ghosh,et al.  The crystal structure of the IkappaBalpha/NF-kappaB complex reveals mechanisms of NF-kappaB inactivation. , 1998, Cell.

[48]  D. F. Ogletree,et al.  Probing the interaction between single molecules: fluorescence resonance energy transfer between a single donor and a single acceptor , 1996, Summaries of Papers Presented at the Quantum Electronics and Laser Science Conference.

[49]  D. Thomas,et al.  Identification of lysine residues required for signal-induced ubiquitination and degradation of I kappa B-alpha in vivo. , 1996, Oncogene.

[50]  M. Karin,et al.  Mapping of the inducible IkappaB phosphorylation sites that signal its ubiquitination and degradation , 1996, Molecular and cellular biology.

[51]  L. Baldi,et al.  Critical Role for Lysines 21 and 22 in Signal-induced, Ubiquitin-mediated Proteolysis of IB- (*) , 1996, The Journal of Biological Chemistry.

[52]  T. Maniatis,et al.  Signal-induced degradation of I kappa B alpha requires site-specific ubiquitination. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[53]  D. Baltimore,et al.  I kappa B: a specific inhibitor of the NF-kappa B transcription factor. , 1988, Science.