Measuring fundamental properties in operating solid oxide electrochemical cells by using in situ X-ray photoelectron spectroscopy.

[1]  Z. Hussain,et al.  New ambient pressure photoemission endstation at Advanced Light Source beamline 9.3.2. , 2010, The Review of scientific instruments.

[2]  Meilin Liu,et al.  Enhanced Sulfur and Coking Tolerance of a Mixed Ion Conductor for SOFCs: BaZr0.1Ce0.7Y0.2-xYbx O3-δ. , 2009 .

[3]  Zhe Cheng,et al.  Enhanced Sulfur and Coking Tolerance of a Mixed Ion Conductor for SOFCs: BaZr0.1Ce0.7Y0.2–xYbxO3–δ , 2009, Science.

[4]  J. Almer,et al.  Phase and strain distributions associated with reactive contaminants inside of a solid oxide fuel cell , 2009 .

[5]  D. F. Ogletree,et al.  Photoelectron spectroscopy under ambient pressure and temperature conditions , 2009 .

[6]  T. Fister,et al.  In situ characterization of strontium surface segregation in epitaxial La0.7Sr0.3MnO3 thin films as a function of oxygen partial pressure , 2008 .

[7]  M. Salmeron Ambient pressure photoelectron spectroscopy: a new tool for surface science and nanotechnology , 2008 .

[8]  Michael B. Pomfret,et al.  Hydrocarbon Fuels in Solid Oxide Fuel Cells: In Situ Raman Studies of Graphite Formation and Oxidation , 2008 .

[9]  Akio Kotani,et al.  Core Level Spectroscopy of Solids , 2008 .

[10]  M. V. Ganduglia-Pirovano,et al.  Oxygen vacancies in transition metal and rare earth oxides: Current state of understanding and remaining challenges , 2007 .

[11]  Meilin Liu,et al.  Characterization of sulfur poisoning of Ni–YSZ anodes for solid oxide fuel cells using in situ Raman microspectroscopy , 2007 .

[12]  Michael B. Pomfret,et al.  In situ studies of fuel oxidation in solid oxide fuel cells. , 2007, Analytical chemistry.

[13]  G. Choi,et al.  Electrical conductivity of thick film YSZ , 2006 .

[14]  Günter Schiller,et al.  SOFC characteristics along the flow path , 2006 .

[15]  Jon M. Hiller,et al.  Three-dimensional reconstruction of a solid-oxide fuel-cell anode , 2006, Nature materials.

[16]  John B Goodenough,et al.  Double Perovskites as Anode Materials for Solid-Oxide Fuel Cells , 2006, Science.

[17]  Y. Akiniwa,et al.  Changes of Internal Stress in Solid-Oxide Fuel Cell During Red-Ox Cycle Evaluated by In Situ Measurement With Synchrotron Radiation , 2006 .

[18]  Ling Zhou,et al.  Electron Localization Determines Defect Formation on Ceria Substrates , 2005, Science.

[19]  Charles T. Campbell,et al.  Oxygen Vacancies and Catalysis on Ceria Surfaces , 2005, Science.

[20]  Juergen Fleig On the current-voltage characteristics of charge transfer reactions at mixed conducting electrodes on solid electrolytes. , 2005, Physical chemistry chemical physics : PCCP.

[21]  S. Adler Factors governing oxygen reduction in solid oxide fuel cell cathodes. , 2004, Chemical reviews.

[22]  Zongping Shao,et al.  A high-performance cathode for the next generation of solid-oxide fuel cells , 2004, Nature.

[23]  J. Vohs,et al.  Measurement of electrode overpotentials for direct hydrocarbon conversion fuel cells , 2004 .

[24]  Nigel P. Brandon,et al.  Recent Advances in Materials for Fuel Cells , 2003 .

[25]  S. Haile Fuel cell materials and components , 2003 .

[26]  M. D. Rooij,et al.  Electrochemical Methods: Fundamentals and Applications , 2003 .

[27]  M. Flytzani-Stephanopoulos,et al.  Active Nonmetallic Au and Pt Species on Ceria-Based Water-Gas Shift Catalysts , 2003, Science.

[28]  H. Schichlein,et al.  Deconvolution of electrochemical impedance spectra for the identification of electrode reaction mechanisms in solid oxide fuel cells , 2002 .

[29]  Jürgen Fleig,et al.  On the width of the electrochemically active region in mixed conducting solid oxide fuel cell cathodes , 2002 .

[30]  Paolo Fornasiero,et al.  Catalysis by Ceria and Related Materials , 2002 .

[31]  B. Steele,et al.  Materials for fuel-cell technologies , 2001, Nature.

[32]  S. Chan,et al.  Reliability and accuracy of measured overpotential in a three-electrode fuel cell system , 2001 .

[33]  Ilanit Doron-Mor,et al.  Controlled surface charging as a depth-profiling probe for mesoscopic layers , 2000, Nature.

[34]  Mogens Bjerg Mogensen,et al.  Physical, chemical and electrochemical properties of pure and doped ceria , 2000 .

[35]  S. A. Barnett,et al.  A direct-methane fuel cell with a ceria-based anode , 1999, Nature.

[36]  S. Overbury,et al.  Electron spectroscopy of single crystal and polycrystalline cerium oxide surfaces , 1998 .

[37]  J. Winkler,et al.  Geometric Requirements of Solid Electrolyte Cells with a Reference Electrode , 1998 .

[38]  E. Garboczi,et al.  Experimental limitations in impedance spectroscopy: Part III. Effect of reference electrode geometry/position , 1997 .

[39]  J. Ying,et al.  XPS investigation of surface oxidation and reduction in nanocrystalline CexLa1 − xO2 − y , 1995 .

[40]  S. Bebelis,et al.  Origin of non-faradaic electrochemical modification of catalytic activity , 1993 .

[41]  N. Minh Ceramic Fuel Cells , 1993 .

[42]  A. Ohmura,et al.  An Octane-Fueled Solid Oxide Fuel Cell , 2011 .

[43]  V. Gun'ko,et al.  Surface Chemistry in Biomedical and Environmental Science , 2006 .

[44]  C. Peden,et al.  Chemistry. Oxygen vacancies and catalysis on ceria surfaces. , 2005, Science.

[45]  S. Singhal,et al.  Advanced anodes for high-temperature fuel cells , 2004, Nature materials.

[46]  H. Siegbahn,et al.  A method of depressing gaseous-phase electron lines in liquid-phase ESCA spectra , 1982 .

[47]  G. Thornton,et al.  Satellite structure in the X-ray photoelectron spectra of some binary and mixed oxides of lanthanum and cerium , 1976 .

[48]  Stanley Bruckenstein,et al.  Electrochemical Kinetics: Theoretical and Experimental Aspects , 1967 .