Variational Problems Involving a Caputo-Type Fractional Derivative

The aim of this paper is to study certain problems of calculus of variations that are dependent upon a Lagrange function on a Caputo-type fractional derivative. This type of fractional operator is a generalization of the Caputo and the Caputo–Hadamard fractional derivatives that are dependent on a real parameter $$\rho $$ρ. Sufficient and necessary conditions of the first and second order are presented. The cases of integral and holonomic constraints are also considered.

[1]  Dumitru Baleanu,et al.  Caputo-type modification of the Hadamard fractional derivatives , 2012, Advances in Difference Equations.

[2]  Guy Jumarie,et al.  An approach via fractional analysis to non-linearity induced by coarse-graining in space , 2010 .

[3]  Guy Jumarie,et al.  From Lagrangian mechanics fractal in space to space fractal Schrödinger’s equation via fractional Taylor’s series , 2009 .

[4]  Agnieszka B. Malinowska,et al.  Introduction to the Fractional Calculus of Variations , 2012 .

[5]  Delfim F. M. Torres,et al.  Calculus of variations with fractional derivatives and fractional integrals , 2009, Appl. Math. Lett..

[6]  G. Teschl Ordinary Differential Equations and Dynamical Systems , 2012 .

[7]  S. Pooseh Computational Methods in the Fractional Calculus of Variations , 2013, 1312.4064.

[8]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations, Volume 204 (North-Holland Mathematics Studies) , 2006 .

[9]  Agnieszka B. Malinowska,et al.  Fractional differential equations with dependence on the Caputo-Katugampola derivative , 2016, 1607.06913.

[10]  Jacky Cresson,et al.  Fractional embedding of differential operators and Lagrangian systems , 2006, math/0605752.

[11]  Dumitru Baleanu,et al.  Fractional variational principles with delay , 2008 .

[12]  Delfim F. M. Torres,et al.  Fractional actionlike variational problems , 2008, 0804.4500.

[13]  Udita N. Katugampola New approach to a generalized fractional integral , 2010, Appl. Math. Comput..

[14]  Delfim F. M. Torres,et al.  The Legendre condition of the fractional calculus of variations , 2013, 1312.4714.

[15]  T. Atanacković,et al.  Variational problems with fractional derivatives: Euler–Lagrange equations , 2008, 1101.2961.

[16]  Delfim F. M. Torres,et al.  Fractional Noether's theorem in the Riesz-Caputo sense , 2010, Appl. Math. Comput..

[17]  Agnieszka B. Malinowska,et al.  Multiobjective fractional variational calculus in terms of a combined Caputo derivative , 2010, Appl. Math. Comput..

[18]  Agnieszka B. Malinowska,et al.  Generalized natural boundary conditions for fractional variational problems in terms of the Caputo derivative , 2010, Comput. Math. Appl..

[19]  Om P. Agrawal,et al.  Formulation of Euler–Lagrange equations for fractional variational problems , 2002 .

[20]  O. Agrawal,et al.  Models and Numerical Solutions of Generalized Oscillator Equations , 2014 .

[21]  Vladimir I. Arnold,et al.  Ordinary differential equations and smooth dynamical systems , 1997 .

[22]  Dumitru Baleanu,et al.  A new method of finding the fractional Euler-Lagrange and Hamilton equations within Caputo fractional derivatives , 2010 .

[23]  Yufeng Xu,et al.  Generalized vector calculus on convex domain , 2015, Commun. Nonlinear Sci. Numer. Simul..

[24]  Dumitru Baleanu,et al.  On Caputo modification of the Hadamard fractional derivatives , 2014, Advances in Difference Equations.

[25]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations , 2006 .

[26]  Eqab M. Rabei,et al.  On fractional Euler–Lagrange and Hamilton equations and the fractional generalization of total time derivative , 2007, 0708.1690.

[27]  Riewe,et al.  Nonconservative Lagrangian and Hamiltonian mechanics. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[28]  Udita N. Katugampola A NEW APPROACH TO GENERALIZED FRACTIONAL DERIVATIVES , 2011, 1106.0965.

[29]  Agnieszka B. Malinowska,et al.  Fractional Variational Calculus with Classical and Combined Caputo Derivatives , 2011, 1101.2932.