Large‐scale Computational Models of Ongoing Brain Activity

[1]  B. Biswal,et al.  Simultaneous assessment of flow and BOLD signals in resting‐state functional connectivity maps , 1997, NMR in biomedicine.

[2]  S. Strogatz From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators , 2000 .

[3]  Xiao-Jing Wang,et al.  What determines the frequency of fast network oscillations with irregular neural discharges? I. Synaptic dynamics and excitation-inhibition balance. , 2003, Journal of neurophysiology.

[4]  P. Hagmann,et al.  Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging , 2005, Magnetic resonance in medicine.

[5]  C. Morris,et al.  Voltage oscillations in the barnacle giant muscle fiber. , 1981, Biophysical journal.

[6]  J. Cowan,et al.  Excitatory and inhibitory interactions in localized populations of model neurons. , 1972, Biophysical journal.

[7]  Olaf Sporns,et al.  THE HUMAN CONNECTOME: A COMPLEX NETWORK , 2011, Schizophrenia Research.

[8]  G. Deco,et al.  Ongoing Cortical Activity at Rest: Criticality, Multistability, and Ghost Attractors , 2012, The Journal of Neuroscience.

[9]  Jonathan D. Power,et al.  Intrinsic and Task-Evoked Network Architectures of the Human Brain , 2014, Neuron.

[10]  Viktor K. Jirsa,et al.  Noise during Rest Enables the Exploration of the Brain's Dynamic Repertoire , 2008, PLoS Comput. Biol..

[11]  Ravi S. Menon,et al.  Identification of Optimal Structural Connectivity Using Functional Connectivity and Neural Modeling , 2014, The Journal of Neuroscience.

[12]  J. Hindmarsh,et al.  A model of neuronal bursting using three coupled first order differential equations , 1984, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[13]  E. Ising Beitrag zur Theorie des Ferromagnetismus , 1925 .

[14]  O. Sporns,et al.  Complex brain networks: graph theoretical analysis of structural and functional systems , 2009, Nature Reviews Neuroscience.

[15]  Viktor K. Jirsa,et al.  The Virtual Brain Integrates Computational Modeling and Multimodal Neuroimaging , 2013, Brain Connect..

[16]  Georgios A. Keliris,et al.  Introduction to Research Topic – Binocular Rivalry: A Gateway to Studying Consciousness , 2012, Front. Hum. Neurosci..

[17]  A. Kleinschmidt,et al.  Electroencephalographic signatures of attentional and cognitive default modes in spontaneous brain activity fluctuations at rest , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[18]  M. Lobo,et al.  Shining light on motivation, emotion, and memory processes , 2015, Front. Behav. Neurosci..

[19]  Steen Moeller,et al.  The Human Connectome Project: A data acquisition perspective , 2012, NeuroImage.

[20]  Edward T. Bullmore,et al.  Broadband Criticality of Human Brain Network Synchronization , 2009, PLoS Comput. Biol..

[21]  E. Bullmore,et al.  Adaptive reconfiguration of fractal small-world human brain functional networks , 2006, Proceedings of the National Academy of Sciences.

[22]  Viktor K Jirsa,et al.  Neural Population Modes Capture Biologically Realistic Large Scale Network Dynamics , 2011, Bulletin of mathematical biology.

[23]  Gustavo Deco,et al.  The Emergence of Spontaneous and Evoked Functional Connectivity in a Large-Scale Model of the Brain , 2015 .

[24]  Viktor K Jirsa,et al.  Reduced representations of heterogeneous mixed neural networks with synaptic coupling. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[25]  David C. Van Essen,et al.  The future of the human connectome , 2012, NeuroImage.

[26]  Maurizio Corbetta,et al.  The human brain is intrinsically organized into dynamic, anticorrelated functional networks. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[27]  Hamid Reza Mohseni,et al.  How delays matter in an oscillatory whole-brain spiking-neuron network model for MEG alpha-rhythms at rest , 2014, NeuroImage.

[28]  Darren Price,et al.  Investigating the electrophysiological basis of resting state networks using magnetoencephalography , 2011, Proceedings of the National Academy of Sciences.

[29]  Gustavo Deco,et al.  Computational Modeling of Resting-State Activity Demonstrates Markers of Normalcy in Children with Prenatal or Perinatal Stroke , 2015, The Journal of Neuroscience.

[30]  M. Corbetta,et al.  Large-scale cortical correlation structure of spontaneous oscillatory activity , 2012, Nature Neuroscience.

[31]  O. Sporns,et al.  Mapping the Structural Core of Human Cerebral Cortex , 2008, PLoS biology.

[32]  Karl J. Friston,et al.  Modulation of excitatory synaptic coupling facilitates synchronization and complex dynamics in a biophysical model of neuronal dynamics , 2003 .

[33]  Viktor K. Jirsa,et al.  A Low Dimensional Description of Globally Coupled Heterogeneous Neural Networks of Excitatory and Inhibitory Neurons , 2008, PLoS Comput. Biol..

[34]  O Sporns,et al.  Predicting human resting-state functional connectivity from structural connectivity , 2009, Proceedings of the National Academy of Sciences.

[35]  Alexander Huk,et al.  PLDAPS: A Hardware Architecture and Software Toolbox for Neurophysiology Requiring Complex Visual Stimuli and Online Behavioral Control , 2012, Front. Neuroinform..

[36]  J. Cowan,et al.  A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue , 1973, Kybernetik.

[37]  R. Kötter,et al.  Cortical network dynamics with time delays reveals functional connectivity in the resting brain , 2008, Cognitive Neurodynamics.

[38]  Olaf Sporns,et al.  MR connectomics: Principles and challenges , 2010, Journal of Neuroscience Methods.

[39]  Marc Joliot,et al.  Brain activity at rest: a multiscale hierarchical functional organization. , 2011, Journal of neurophysiology.

[40]  S. Rombouts,et al.  Consistent resting-state networks across healthy subjects , 2006, Proceedings of the National Academy of Sciences.

[41]  B. Biswal,et al.  Functional connectivity in the motor cortex of resting human brain using echo‐planar mri , 1995, Magnetic resonance in medicine.

[42]  K. Linkenkaer-Hansen,et al.  Avalanche dynamics of human brain oscillations: Relation to critical branching processes and temporal correlations , 2008, Human brain mapping.

[43]  G. Tononi,et al.  Rethinking segregation and integration: contributions of whole-brain modelling , 2015, Nature Reviews Neuroscience.

[44]  Anthony Randal McIntosh,et al.  Hundreds of brain maps in one atlas: Registering coordinate-independent primate neuro-anatomical data to a standard brain , 2012, NeuroImage.

[45]  Xiao-Jing Wang,et al.  A Recurrent Network Mechanism of Time Integration in Perceptual Decisions , 2006, The Journal of Neuroscience.

[46]  Karl J. Friston,et al.  Dynamic causal modelling , 2003, NeuroImage.

[47]  Stephen M. Smith,et al.  fMRI resting state networks define distinct modes of long-distance interactions in the human brain , 2006, NeuroImage.

[48]  E. Rolls,et al.  Decision‐making and Weber's law: a neurophysiological model , 2006, The European journal of neuroscience.

[49]  O. Sporns,et al.  Key role of coupling, delay, and noise in resting brain fluctuations , 2009, Proceedings of the National Academy of Sciences.

[50]  M. Raichle,et al.  Searching for a baseline: Functional imaging and the resting human brain , 2001, Nature Reviews Neuroscience.

[51]  Viktor K. Jirsa,et al.  Neuronal Dynamics and Brain Connectivity , 2007 .

[52]  Gustavo Deco,et al.  Role of local network oscillations in resting-state functional connectivity , 2011, NeuroImage.

[53]  K. Linkenkaer-Hansen,et al.  Critical-State Dynamics of Avalanches and Oscillations Jointly Emerge from Balanced Excitation/Inhibition in Neuronal Networks , 2012, The Journal of Neuroscience.

[54]  V. Haughton,et al.  Frequencies contributing to functional connectivity in the cerebral cortex in "resting-state" data. , 2001, AJNR. American journal of neuroradiology.

[55]  M. Corbetta,et al.  Temporal dynamics of spontaneous MEG activity in brain networks , 2010, Proceedings of the National Academy of Sciences.

[56]  S. Yoshizawa,et al.  An Active Pulse Transmission Line Simulating Nerve Axon , 1962, Proceedings of the IRE.

[57]  Karl J. Friston,et al.  Nonlinear Responses in fMRI: The Balloon Model, Volterra Kernels, and Other Hemodynamics , 2000, NeuroImage.

[58]  Vinod Menon,et al.  Functional connectivity in the resting brain: A network analysis of the default mode hypothesis , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[59]  Rolf Kötter,et al.  Online retrieval, processing, and visualization of primate connectivity data from the CoCoMac Database , 2007, Neuroinformatics.

[60]  Matthew J. Brookes,et al.  Measuring functional connectivity using MEG: Methodology and comparison with fcMRI , 2011, NeuroImage.

[61]  James Kozloski,et al.  Self-referential forces are sufficient to explain different dendritic morphologies , 2013, Front. Neuroinform..

[62]  M. Corbetta,et al.  Common Blood Flow Changes across Visual Tasks: II. Decreases in Cerebral Cortex , 1997, Journal of Cognitive Neuroscience.

[63]  Stephen M Smith,et al.  Correspondence of the brain's functional architecture during activation and rest , 2009, Proceedings of the National Academy of Sciences.

[64]  R. FitzHugh Impulses and Physiological States in Theoretical Models of Nerve Membrane. , 1961, Biophysical journal.

[65]  S. Strogatz,et al.  Time Delay in the Kuramoto Model of Coupled Oscillators , 1998, chao-dyn/9807030.

[66]  Karl J. Friston,et al.  The Dynamic Brain: From Spiking Neurons to Neural Masses and Cortical Fields , 2008, PLoS Comput. Biol..

[67]  Maurizio Corbetta,et al.  Resting-State Functional Connectivity Emerges from Structurally and Dynamically Shaped Slow Linear Fluctuations , 2013, The Journal of Neuroscience.

[68]  M. Fox,et al.  Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging , 2007, Nature Reviews Neuroscience.

[69]  M. Corbetta,et al.  Electrophysiological signatures of resting state networks in the human brain , 2007, Proceedings of the National Academy of Sciences.

[70]  M. V. D. Heuvel,et al.  Exploring the brain network: A review on resting-state fMRI functional connectivity , 2010, European Neuropsychopharmacology.

[71]  Olaf Sporns,et al.  Network structure of cerebral cortex shapes functional connectivity on multiple time scales , 2007, Proceedings of the National Academy of Sciences.