Construction of Covalent-Organic Frameworks from Amorphous Covalent Organic Polymers via Linkage Replacement.

Covalent-organic frameworks (COFs) as porous crystalline materials show promising application potentials. However, developing facile strategies for the construction of COFs directly from amorphous covalent organic polymers (COPs) is still a great challenge. To this end, we report a novel approach for easy preparation of COFs from amorphous COPs through the linkage replacement under different types of reactions, where four COFs with high crystallinity and porosity were constructed via the linkage substitution of polyimide-linked COPs to imine-linked COFs as well as imine-linked COPs to polyimide-linked COFs. The realization of the linkage substitution would significantly expand the research scope of COFs.

[1]  Junliang Sun,et al.  Isostructural Three-Dimensional Covalent Organic Frameworks. , 2019, Angewandte Chemie.

[2]  Junliang Sun,et al.  Isostructural Three‐Dimensional Covalent Organic Frameworks , 2019, Angewandte Chemie.

[3]  Yanli Zhao,et al.  A Novel Strategy for the Construction of Covalent Organic Frameworks from Nonporous Covalent Organic Polymers. , 2019, Angewandte Chemie.

[4]  Yanli Zhao,et al.  A Novel Strategy for the Construction of Covalent Organic Frameworks from Nonporous Covalent Organic Polymers. , 2019, Angewandte Chemie.

[5]  Junliang Sun,et al.  Cage Based Crystalline Covalent Organic Frameworks. , 2019, Journal of the American Chemical Society.

[6]  Bao-hang Han,et al.  Structural and Dimensional Transformations between Covalent Organic Frameworks via Linker Exchange , 2019, Macromolecules.

[7]  William R. Dichtel,et al.  Improved synthesis of β-ketoenamine-linked covalent organic frameworks via monomer exchange reactions. , 2018, Chemical communications.

[8]  N. Tamura,et al.  Molecular Weaving of Covalent Organic Frameworks for Adaptive Guest Inclusion. , 2018, Journal of the American Chemical Society.

[9]  L. Wan,et al.  Confined Synthesis of Two-Dimensional Covalent Organic Framework Thin Films within Superspreading Water Layer. , 2018, Journal of the American Chemical Society.

[10]  Nanette N. Jarenwattananon,et al.  Conversion of Imine to Oxazole and Thiazole Linkages in Covalent Organic Frameworks. , 2018, Journal of the American Chemical Society.

[11]  A. Coskun,et al.  Epoxy-Functionalized Porous Organic Polymers via the Diels-Alder Cycloaddition Reaction for Atmospheric Water Capture. , 2018, Angewandte Chemie.

[12]  S. Kitagawa,et al.  Construction of a Hierarchical Architecture of Covalent Organic Frameworks via a Postsynthetic Approach. , 2018, Journal of the American Chemical Society.

[13]  M. Grünwald,et al.  Microscopic Origins of Poor Crystallinity in the Synthesis of Covalent Organic Framework COF-5. , 2018, Journal of the American Chemical Society.

[14]  Xiao Feng,et al.  Three-Dimensional Anionic Cyclodextrin-Based Covalent Organic Frameworks. , 2017, Angewandte Chemie.

[15]  William R. Dichtel,et al.  Nucleation and Growth of Covalent Organic Frameworks from Solution: The Example of COF-5. , 2017, Journal of the American Chemical Society.

[16]  F. Blanc,et al.  Stable and ordered amide frameworks synthesised under reversible conditions which facilitate error checking , 2017, Nature Communications.

[17]  S. Dai,et al.  Efficient removal of organic dye pollutants using covalent organic frameworks , 2017 .

[18]  Ligong Chen,et al.  Two-Dimensional Imine-Linked Covalent Organic Frameworks as a Platform for Selective Oxidation of Olefins. , 2017, ACS applied materials & interfaces.

[19]  S. Shalini,et al.  Super-hydrophobic covalent organic frameworks for chemical resistant coatings and hydrophobic paper and textile composites , 2017 .

[20]  G. Jiang,et al.  Toward Covalent Organic Frameworks Bearing Three Different Kinds of Pores: The Strategy for Construction and COF-to-COF Transformation via Heterogeneous Linker Exchange. , 2017, Journal of the American Chemical Society.

[21]  R. Banerjee,et al.  Targeted Drug Delivery in Covalent Organic Nanosheets (CONs) via Sequential Postsynthetic Modification. , 2017, Journal of the American Chemical Society.

[22]  S. Namuangruk,et al.  Manipulation of Amorphous-to-Crystalline Transformation: Towards the Construction of Covalent Organic Framework Hybrid Microspheres with NIR Photothermal Conversion Ability. , 2016, Angewandte Chemie.

[23]  R. Banerjee,et al.  Decoding the Morphological Diversity in Two Dimensional Crystalline Porous Polymers by Core Planarity Modulation. , 2016, Angewandte Chemie.

[24]  T. Heine,et al.  Highly Emissive Covalent Organic Frameworks. , 2016, Journal of the American Chemical Society.

[25]  Yanli Zhao,et al.  Covalent Organic Frameworks for CO2 Capture , 2016, Advanced materials.

[26]  Guiqing Lin,et al.  A Pyrene-Based, Fluorescent Three-Dimensional Covalent Organic Framework. , 2016, Journal of the American Chemical Society.

[27]  Ming Dong,et al.  Thioether-Based Fluorescent Covalent Organic Framework for Selective Detection and Facile Removal of Mercury(II). , 2016, Journal of the American Chemical Society.

[28]  Yanli Zhao,et al.  Reconstruction of Covalent Organic Frameworks by Dynamic Equilibrium. , 2015, Chemistry.

[29]  P. Yang,et al.  Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water , 2015, Science.

[30]  Yushan Yan,et al.  3D Porous Crystalline Polyimide Covalent Organic Frameworks for Drug Delivery. , 2015, Journal of the American Chemical Society.

[31]  R. Zou,et al.  Covalent organic frameworks formed with two types of covalent bonds based on orthogonal reactions. , 2015, Journal of the American Chemical Society.

[32]  Roland A. Fischer,et al.  Eine kryoflexible kovalente organische Gerüststruktur für die effiziente Trennung von Wasserstoffisotopien durch Quantensieben , 2013 .

[33]  M. Hirscher,et al.  A cryogenically flexible covalent organic framework for efficient hydrogen isotope separation by quantum sieving. , 2013, Angewandte Chemie.

[34]  J. Senker,et al.  Microporous Functionalized Triazine-Based Polyimides with High CO2 Capture Capacity , 2013 .

[35]  Yuan Zhang,et al.  Construction of covalent organic framework for catalysis: Pd/COF-LZU1 in Suzuki-Miyaura coupling reaction. , 2011, Journal of the American Chemical Society.

[36]  Omar M Yaghi,et al.  Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications. , 2009, Journal of the American Chemical Society.

[37]  Michael O’Keeffe,et al.  A crystalline imine-linked 3-D porous covalent organic framework. , 2009, Journal of the American Chemical Society.

[38]  S. Wan,et al.  A belt-shaped, blue luminescent, and semiconducting covalent organic framework. , 2008, Angewandte Chemie.

[39]  Omar M. Yaghi,et al.  Reticular synthesis of covalent organic borosilicate frameworks. , 2008, Journal of the American Chemical Society.

[40]  Arne Thomas,et al.  Ionothermalsynthese von porösen kovalenten Triazin‐ Polymernetzwerken , 2008 .

[41]  Markus Antonietti,et al.  Porous, covalent triazine-based frameworks prepared by ionothermal synthesis. , 2008, Angewandte Chemie.

[42]  Michael O'Keeffe,et al.  Designed Synthesis of 3D Covalent Organic Frameworks , 2007, Science.

[43]  Michael O'Keeffe,et al.  Porous, Crystalline, Covalent Organic Frameworks , 2005, Science.